
Computer Science and Engineering  College of Engineering  The Ohio State University

Security: Cryptography

Lecture 37

Computer Science and Engineering  The Ohio State University

Some High-Level Goals
 Confidentiality
 Non-authorized users have limited access

 Integrity
 Accuracy/correctness/validity of data

 Availability
 No down-time or disruptions

 Authenticity
 Agents are who they claim to be

 Non-repudiation
 A party to a transaction can not later deny

their participation

Computer Science and Engineering  The Ohio State University

Methods of Attack

 Target people (“social engineering”)
 Phishing: email, phone, surveys, …
 Baiting: click & install, physical media, …

 Target software (“exploits”)
 Unpatched OS, browser, programs
 Buffer overflow
 Code injection and cross-site scripting

 Target channel (“man-in-the-middle”)
 Eavesdropping
 Masquerading, tampering, replay

Computer Science and Engineering  The Ohio State University

Cryptography
 Etymology (Greek)
 kryptos: hidden or secret
 grapho: write

 Basic problem:
 2 agents (traditionally “Alice” and “Bob”)
 A & B want to exchange private messages
 Channel between A & B is not secure (“Eve” is

eavesdropping)
 Solution has other applications too
 Protect stored data (e.g. on disk, or in cloud)
 Digital signatures for non-repudiation
 Secure passwords for authentication

Computer Science and Engineering  The Ohio State University

Core Idea: A Shared Secret

 Alice & Bob share some secret
 Secret can not be the message itself
 Secret used to protect arbitrary messages

 Crude analogy: a padlock
 Copies of the physical key are the secret
 Alice puts message in box and locks it
 Bob unlocks box and reads message

 But real channels are bit streams
 Eve can see the bits!
 Message must be garbled in some way
 Secret is strategy for garbling/degarbling

Computer Science and Engineering  The Ohio State University

Protecting Messages

 Alice garbles (encrypts) the message
 Sends the encrypted cipher-text
 Bob knows how to degarble (decrypt)

cipher-text back into plain-text

Image: www.devx.com

Computer Science and Engineering  The Ohio State University

Encryption/Decryption Function

E

D
Plaintext
messages (P)

Ciphertext
Messages (Q)

“hello”

m Secret c

“fwspdaad”

E(m) = c
D(c) = m
i.e. D = E-1

E: P  Q
D: Q  P Note: often P = Q

So E is a permutation

Computer Science and Engineering  The Ohio State University

Families of Encryption Functions

 Each pair of agents needs their own E
 Many E’s (& corresponding D’s) needed

 But good E’s are hard to invent
 Solution: design one (good) E, which is

parameterized by a number
 That is, have a huge family of E’s:

E0, E1, E2, … EK

 Everyone knows the family of E's
 Secret: which Ei is used (i is the key)

Computer Science and Engineering  The Ohio State University

Classic Example: Caesar Cipher
 Shift each letter by x positions in alphabet
 Example: x = 3

a  d, b  e, c  f, d  g, e  h, …
 The key is x

 Encode a string character-by-character
 For m = “hello world”, E3(m) = “khoor zruog”

 Questions:
 What is P (set of plaintext messages)?

 What is Q (set of ciphertext messages)?

 How many different ciphers?

 Is this a strong or weak cipher?

Computer Science and Engineering  The Ohio State University

Classic Example: Caesar Cipher
 Shift each letter by x positions in alphabet
 E.g. x = 3

a  d, b  e, c  f, d  g, e  h, …
 The key is x

 Encode a string character-by-character
 For m = “hello world”, E3(m) = “khoor zruog”

 Questions:
 What is P (set of plaintext messages)?

 The alphabet, ie {“a”, “b”, “c”, “d”, “e”, …}
 What is Q (set of ciphertext messages)?

 The alphabet, ie {“a”, “b”, “c”, “d”, “e”, …}
 How many different ciphers?

 26
 Is this a strong or weak cipher?

 Weak: Just try all 26 possibilities

Computer Science and Engineering  The Ohio State University

Generalized Caesar Cipher

 Generalization: arbitrary mapping
 Example: The qwerty shift

a  s, b  n, c  v, d  f, e  r, …
 For m = “hello world”,

E(m) = “jraap eptaf”
 26! possible ciphers… that’s a lot!
 Approximately 4 x 1026

 There are ~1018 nanoseconds/century
 Weakness?

Computer Science and Engineering  The Ohio State University

Generalized Caesar Cipher

 Generalization: arbitrary mapping
 Example: The qwerty shift

a  s, b  n, c  v, d  f, e  r, …
 For m = “hello world”,

E(m) = “jraap eptaf”
 26! possible ciphers… that’s a lot!
 Approximately 4 x 1026

 There are ~1018 nanoseconds/century
 Weakness?
 In English text, letters appear in

predictable ratios
 From enough ciphertext, can infer E

Computer Science and Engineering  The Ohio State University

Frequency Analysis

Computer Science and Engineering  The Ohio State University

Leon Battista Alberti

Computer Science and Engineering  The Ohio State University

WW II: Enigma Machine

Computer Science and Engineering  The Ohio State University

Polyalphabetic Cipher

 Alberti’s idea: Use different Ei’s within
the same message
 E(“hello world”) =

Ea(“h”)Eb(“e”)Ec(“l”)Ed(“l”)Ee(“o”)…

 Alice & Bob need to agree on the
sequence of E’s to use

 Claude Shannon proved that this
method is perfectly secure (1949)
 Precise information-theoretic meaning
 Known as a one-time pad

Computer Science and Engineering  The Ohio State University

One-Time Pad
 Message is a sequence of bits

m0 m1 m2 m3 m4 m5 m6…
 One-time pad is random bit sequence

x0 x1 x2 x3 x4 x5 x6…
 E is bit-wise XOR operation,
 Cipher text is

m0⊕x0 m1⊕x1 m2⊕x2 m3⊕x3 m4⊕x4 m5⊕x5 m6⊕x6…
 Problem: Pad is long and cannot be re-

used (hence cumbersome to share)
 In practice: pseudo-random sequence,

generated from a seed (the key)
 Not perfectly secure, in Shannon sense

Computer Science and Engineering  The Ohio State University

Stream Cipher
 Encrypts bit-by-bit

 |P| = |Q| = 2
 Few choices for E

(roughly 2)
 Message can have

any length

Block Cipher
 Encrypts a fixed-

length (k-bit)
sequence

 |P| = |Q| = 2k

 Many choices for E
(roughly 2k!)

 Padding added s.t.
|m| mod k = 0

Comparison: Stream vs Block

Computer Science and Engineering  The Ohio State University

Example of Block Cipher: AES

 Advanced Encryption Standard (2001)
 Replaced DES (1977)

 Block size always 128 bits (4x4 bytes)
 Key size is 128, 192, or 256 bits
 Multi-step algorithm, many rounds

Computer Science and Engineering  The Ohio State University

Limitation of Fixed Block Size

 Message can be longer than block size
 Reuse same E for each block?
 Danger: Frequency analysis vulnerability
 Don’t do this (for multiblock messages)!

https://en.wikipedia.org/wiki/Image:Tux_ecb.jpg
https://commons.wikimedia.org/wiki/File:Tux.jpg

Computer Science and Engineering  The Ohio State University

Solution: Initialization Vector

 Add a random block to start
 Combine adjacent blocks to make

ciphertext block
 Many combination strategies (aka modes)

Computer Science and Engineering  The Ohio State University

Summary

 Cryptography
 Encryption: Maps plaintext  ciphertext
 Decryption is the inverse

 Symmetric-key encryption
 Sender and receiver share (same) secret

key
 Stream ciphers work one bit at a time

(e.g., one-time pad)
 Block ciphers work on larger blocks of bits

(e.g., AES)

Computer Science and Engineering  College of Engineering  The Ohio State University

Security: Cryptography II

Lecture 38

Computer Science and Engineering  The Ohio State University

Symmetric Key

 For ciphers (so far): Knowing E is
enough to figure out D (its inverse)
 If you know how to encrypt, you can

decrypt too
 Known as a symmetric key cipher

 Example: Caesar cipher
 If E(m) = m + 3, D(m) = m – 3

 Example: One-time pad
 Use same pad and same operation (xor)

 Example: AES
 Use same key, reverse rounds and steps

Computer Science and Engineering  The Ohio State University

One-Way Functions

 For some functions, the inverse is hard
to calculate
 One direction (PQ) is easy, but opposite

direction (QP) is hard/expensive/slow
 Intuition:
 Given a puzzle solution, easy to design a

puzzle with that solution (the “forward”
direction)

 Given the puzzle, hard to come up with
the solution (the “inverse” direction)

Computer Science and Engineering  The Ohio State University

Example: Dominating Set

 Hard direction: Find a dominating set
of size at most 6 in the following
graph…

Computer Science and Engineering  The Ohio State University

Example: Dominating Set

 Easy direction: Create a graph with a
dominating set of size 6 from this
forest…

Computer Science and Engineering  The Ohio State University

Example: Factoring

 Multiplying numbers is easy (i.e. fast)
 Can multiply 2 n-bit numbers in n2 steps

 Factoring a number is hard (i.e. slow)
 To factor an n-bit number, need 2n steps

(approximately the number’s value)
 Aside:
 Primality testing is fast (recall lab activity

in Software I and Fermat’s Little Theorem)
 But this fast test doesn’t reveal the factors

of a composite number

Computer Science and Engineering  The Ohio State University

Cryptographic Hash Functions

 A hash function:
 Every message, regardless of its length, maps

to a number in the range
 Result called a digest (constant-length,)
 Good hashes give uniform distribution:

small diff in message  big diff in digest
 Cryptographic hash func’s are one-way
 Given a digest, computationally infeasible to

find any m that hashes to it
 Collisions must still exist (), but

are infeasible to find for large enough
 Digest = a fingerprint of m (small, fixed-size)

Computer Science and Engineering  The Ohio State University

Fixed-Length Digests

Computer Science and Engineering  The Ohio State University

Crypto. Hash as Fingerprint

Computer Science and Engineering  The Ohio State University

Common Cryptographic Hashes
 MD5
 Flaws discovered: “cryptographically broken”
 Do not use!

 SHA-1: deprecated
 Windows, Chrome, Firefox reject (2017)
 160-bit digests (i.e. 40 hex digits)

 Replaced by SHA-2 (still common)
 A family of 6 different hash functions
 Digest sizes: 224, 256, 384, or 512 bits
 Names: SHA-224, SHA-256, SHA-512, etc

 Current state-of-the-art is SHA-3
 Entirely different algorithm
 Names: SHA3-224, SHA3-256, SHA3-512, etc

Computer Science and Engineering  The Ohio State University

Utility of Crypto. Hashes
 Integrity verification (super-checksum)
 File download, check digest matches

 Password protection
 Server stores the hash of user’s password
 Check entered password by computing its

hash and comparing hash to the stored value
 Benefit: Passwords are not stored (directly) in

the database! If server is compromised,
intruder finds hashes but not passwords

 Problem:
 See md5decrypt.net/en/Sha256/
c023d5796452ad1d80263a05d11dc2a42b8c19c5d7c88c0e84ae3731b73a3d34

Computer Science and Engineering  The Ohio State University

Role of Salt
 Danger:
 Intruder pre-computes hashes for many

(common) passwords: aka a rainbow table
 Scan stolen hashes for matches

 Solution: salt
 Server prepends text to password before

hashing
 Text must be unique to user
 Text does not need to be secret

 Ok: Deterministic value based on user name
 Better: Random value, stored in the table

 Protects the fingerprint, by making it not
mass pre-computable

Computer Science and Engineering  The Ohio State University

One-Way Function with Trapdoor

 Function appears to be one-way
 But, in reality, the inverse is easy if one

knows a secret (the “trapdoor”)
 There are two very different functions:
 The one-way-seeming function, E
 The trapdoor for its inverse, D

 Knowing E is not enough to infer D
 Creates an asymmetry:
 Alice knows E
 Bob (and only Bob) knows D

Computer Science and Engineering  The Ohio State University

Asymmetry: Alice vs Bob

E

D

Computer Science and Engineering  The Ohio State University

Public-Key Encryption

 Algorithms for E and D known by all
 But parameterized by matched keys

 Asymmetry
 Key for Bob’s E is public
 Key for Bob’s D is private

 Anyone can encrypt messages for Bob
 Only Bob can decrypt these messages
 Important consequences
 Each agent needs only 1 public key
 No pre-existing shared secret needed

Computer Science and Engineering  The Ohio State University

Public and Private Keys

Computer Science and Engineering  The Ohio State University

RSA
 E and D are actually the same function

 Parameterized by pair , i.e. the key
 Private key:


 Public key:


 Choice of e & d is based on factoring
 Choose 2 large prime numbers, p and q
 Calculate their product, n = pq
 Pick any d relatively prime with (p-1)(q-1)
 Find an e s.t. ed = 1 mod (p-1)(q-1)

Computer Science and Engineering  The Ohio State University

Digital Signature
 Usual direction for encryption:

D(E(m)) = (me)d = med = m, mod n
 One-to-one, so backwards works too!

E(D(m)) = (md)e = mde = m, mod n
 Consider:
 Bob “encrypts” m using his private key, d
 Bob sends both m and D(m)
 Anyone can undo the “encrypted” part using

Bob’s public key, e
 Result will be m

 D(m) serves as a digital signature of m
 Only Bob could have created this signature
 Use: non-repudiation

Computer Science and Engineering  The Ohio State University

Performance Considerations

 Symmetric key algorithms are faster
than public key algorithms

 Optimization for encryption (RSA)
 Create a fresh symmetric key, k
 Use symmetric algorithm to encrypt m
 Use recipient’s public key to encrypt k

 Optimization for digital signatures
 Calculate the digest for m (always short)
 Use sender’s private key to encrypt digest

Computer Science and Engineering  The Ohio State University

Take Home Message

 Don’t try to roll your own
crypto/security implementation

 Use (trusted) libraries
 Recognize role and importance of (eg):
 Initialization vector
 Cryptographic hash/digest
 Salt
 Private key vs public key

Computer Science and Engineering  The Ohio State University

Summary

 One-way function
 Cryptographic hash creates a fingerprint

 Public key encryption
 Matching keys: kprivate, kpublic
 Anyone can use public key to encrypt
 Only holder of private key can decrypt
 Use private key to create a digital

signature

Computer Science and Engineering  The Ohio State University

TLS 1.3: Handshake
 Certificate

authority
 Connects public

key to identity
 Client:
 Get server’s public

key
 Make new

(symmetric)
session key

 Sends this key to
server (encrypted
with public key)

