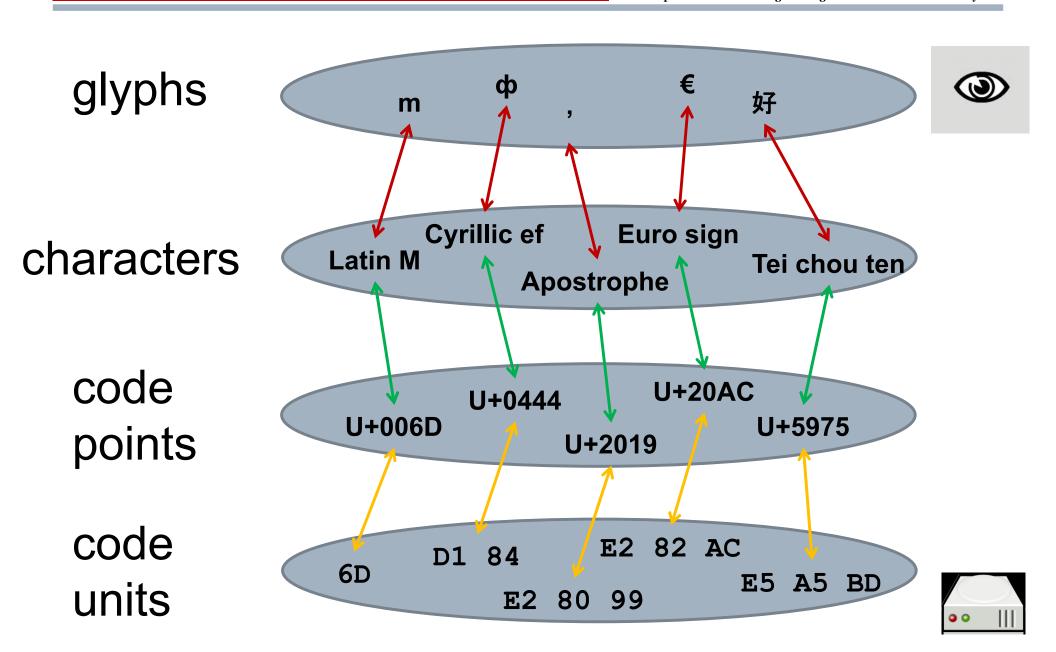
Unicode and UTF-8

Computer Science and Engineering ■ College of Engineering ■ The Ohio State University

Lecture 33

A standard for the discrete representation of written text

The Big Picture


Computer Science and Engineering ■ The Ohio State University glyphs € ф 好 m Cyrillic ef **Euro sign** characters Latin M Tei chou ten **Apostrophe** code U+20AC U+0444 U+006D U+5975 points U+2019

code units

E2 82 AC D1 84 6D (A5) BD E5 E2 80 99

code unit

Ласкаво просимо!

добро пожаловать

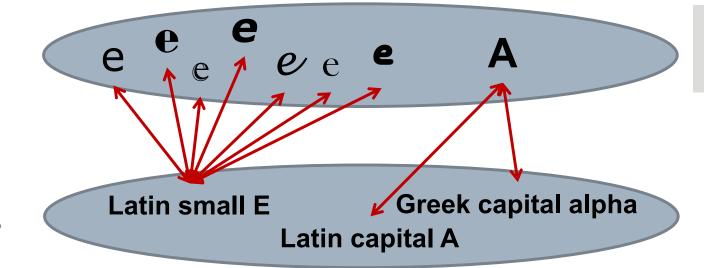
Willkommen 群

Benvenuti ようこそ

한영합니다 Bienvenue

ยินดีต้อนรับ WELKOM Soo dhawow

THE OHIO STATE


Text: A Sequence of Glyphs

- Glyph: "An individual mark on a written medium that contributes to the meaning of what is written."
 - See foyer floor in main library
- One character can have many glyphs
 - Example: Latin E can be e, e, e, e, e, e, e...
- One glyph can be different characters
 - A is both (capital) Latin A and Greek Alpha
- One unit of text can consist of multiple glyphs
 - An accented letter (é) is two glyphs
 - The ligature of f+i (fi) is two glyphs

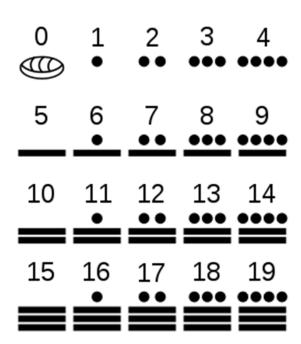
Glyphs vs Characters

Computer Science and Engineering ■ The Ohio State University

glyphs

characters

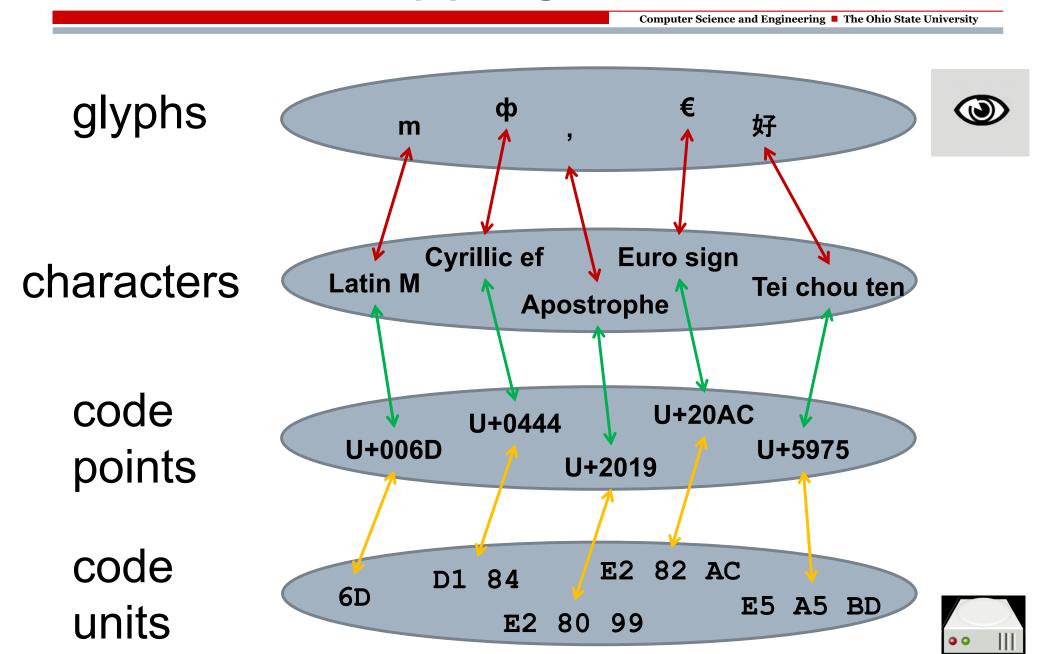
- □ Visual homograph: Two different characters that look the same
 - Would you click here: www.paypal.com?


- □ Visual homograph: Two different characters that look the same
 - Would you click here: www.paypal.com?
 - Oops! The second 'a' is actually CYRILLIC SMALL LETTER A
 - This site successfully registered in 2005
- Other examples: combining characters
 - \tilde{n} = LATIN SMALL LETTER N WITH TILDE
- □ "Solution"
 - Heuristics that warn users when languages are mixed and homographs are possible

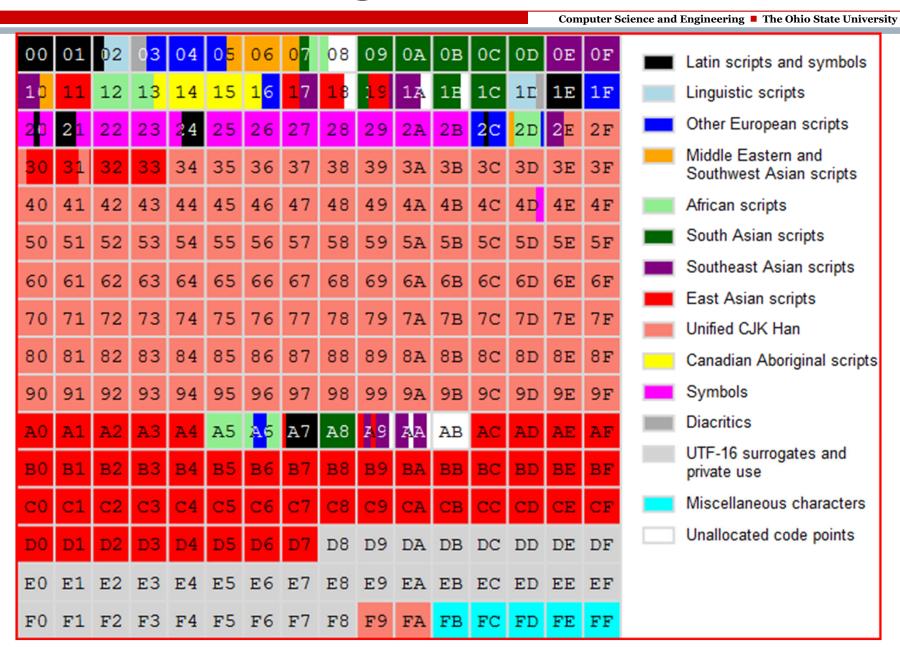
Unicode Code Points

- Each character is assigned a unique code point
- A code point is defined by an integer value, and is also given a name
 - one hundred and nine (109, or 0x6d)
 - LATIN SMALL LETTER M
- □ Convention: Write code points as U+hex
 - Example: U+006D
- □ As of Sept '23, v15.1 (see unicode.org):
 - Contains 149,813 code points emoji-versions.html
 - Covers 161 scripts (and counting...) unicode.org/charts/

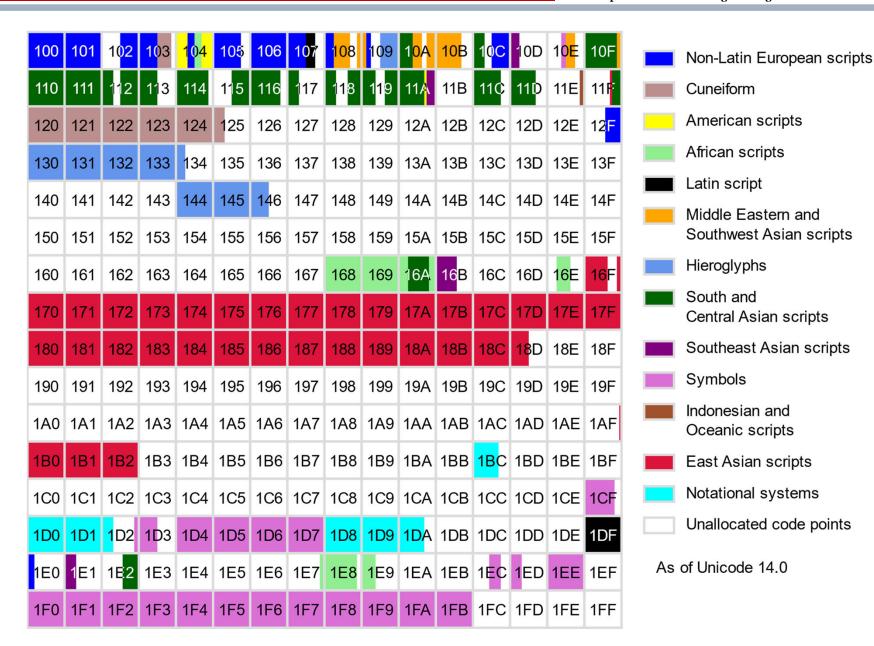
Example Recent Addition (v11)


Computer Science and Engineering ■ The Ohio State University

Mayan numerals

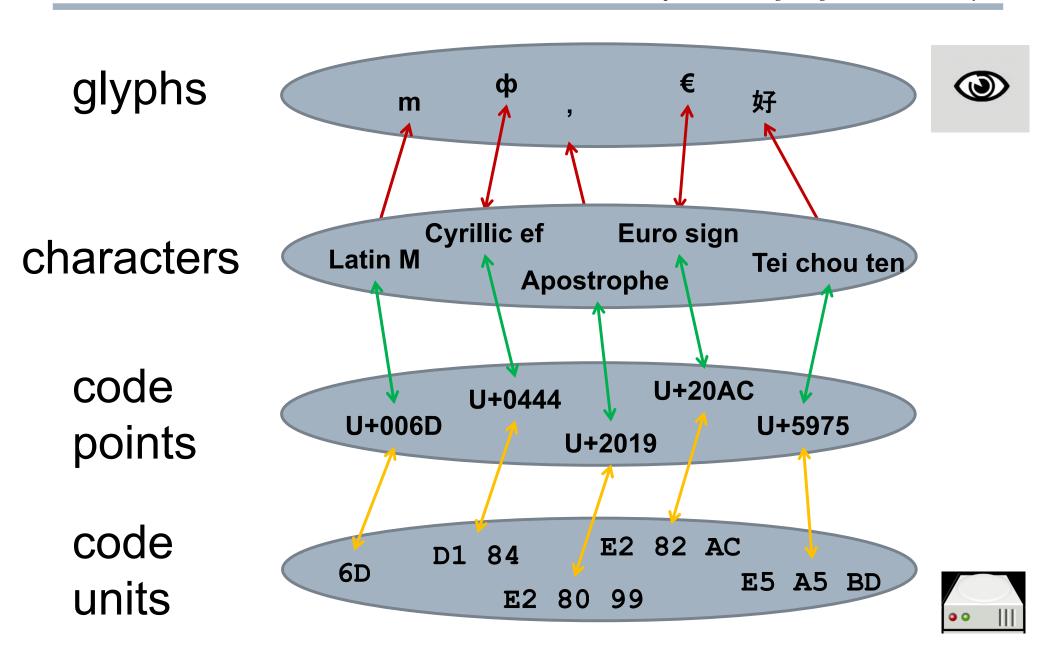

```
1D2E0 🗪 MAYAN NUMERAL ZERO
1D2E1 . MAYAN NUMERAL ONE
1D2E2 . . MAYAN NUMERAL TWO
1D2E3 ... MAYAN NUMERAL THREE
1D2E4 .... MAYAN NUMERAL FOUR
1D2E5 ___ MAYAN NUMERAL FIVE
1D2E6 _ MAYAN NUMERAL SIX
1D2E7 • • MAYAN NUMERAL SEVEN
1D2E8 ••• MAYAN NUMERAL EIGHT
1D2E9 •••• MAYAN NUMERAL NINE
1D2EB 📥 MAYAN NUMERAL ELEVEN
1D2EC : MAYAN NUMERAL TWELVE
1D2ED 🔐 MAYAN NUMERAL THIRTEEN
1D2EE 🔐 MAYAN NUMERAL FOURTEEN
1D2EF MAYAN NUMERAL FIFTEEN
1D2F0 📥 MAYAN NUMERAL SIXTEEN
1D2F1 🗮 MAYAN NUMERAL SEVENTEEN
1D2F2 👑 MAYAN NUMERAL EIGHTEEN
1D2F3 👑 MAYAN NUMERAL NINETEEN
```

Unicode: Mapping to Code Points



- Code points are grouped into categories
 - Basic Latin, Cyrillic, Arabic, Cherokee, Currency, Mathematical Operators, ...
- \square Standard allows for 17 x 2¹⁶ code points
 - 0 to 1,114,111 (i.e., > 1 million)
 - \blacksquare U+0000 to U+10FFFF
- □ Each group of 2¹⁶ called a *plane*
 - U+nnnnnn, same green ==> same plane
- □ Plane 0 called *basic multilingual plane* (BMP)
 - Has (practically) everything you could need
 - Convention: code points in BMP written U+nnnn (ie with leading 0's if needed)
 - Others code points written without leading 0's

Basic Multilingual Plane


Supplemental Plane (plane 1)

- Encoding of code point (integer) in a sequence of bytes (octets)
 - Standard: all caps, with hyphen (UTF-8)
- Variable length
 - Some code points require 1 octet
 - Others require 2, 3, or 4
- Consequence: Can not infer number of characters from size of file!
- No endian-ness: just a sequence of octets
 - DO BF D1 80 D0 B8 D0 B2 D0 B5 D1 82...
- Other encodings exist!
 - Eg UTF-16 use 16 bits (more general term: code unit)

UTF-8: Code Points & Octets


```
Computer Science and Engineering ■ The Ohio State University
```

- □ 1-byte encodings
 - First bit is 0
 - Example: 0110 1101 (encodes U+006D)
- 2-byte encodings
 - First byte starts with **110**...
 - Second byte starts with 10...
 - □ Example: **110**1 0000 **10**11 1111
 - □ Payload: **1101 0000** 10**11 1111** = 100 0011 1111
 - = 0x043F
 - □ Code point: U+043F i.e. п, Cyrillic small letter pe

- Generalization: An encoding of length k:
 - First byte starts with k 1's, then 0
 - Example 1110 0110 ==> first byte of a 3-byte encoding
 - Subsequent k-1 bytes each start with 10
 - Remaining bits are payload
- □ Example: E2 82 AC 11100010 10000010 10101100
 - Payload: 0x20AC (i.e., U+20AC, €)
- Consequence: Stream is selfsynchronizing
 - A dropped byte affects only that character

UTF-8 Encoding Summary

Computer Science and Engineering ■ The Ohio State University

Unicode	Byte1	Byte2	Byte3	Byte4	example
U+0000-U+007F	0xxxxxxx				'\$' U+0024 → 00100100 → 0x24
U+0080-U+07FF	110ууухх	10xxxxxx			'¢' U+00 <u>A</u> 2 → 110000 <u>10</u> , 10 <u>10</u> 0010 → 0xC2, 0xA2
U+0800-U+FFFF	1110уууу	10уууухх	10xxxxxx		'€' U+20AC → 11100010,10000010,10101100 → 0xE2,0x82,0xAC
U+10000-U+10FFFF	11110zzz	10 <i>zzy</i> yyy	10уууухх	10 <i>xxx</i> xxx	'類' U+ <u>024B62</u> → 11110 <u>0</u> 00,1010 <u>0100</u> ,101011 <u>01</u> ,10 <u>10</u> 0010 → 0xF0,0xA4,0xAD,0xA2

(from wikipedia)

- □ For the following UTF-8 encoding, what is the corresponding code point(s)?
 - F0 A4 AD A2

- □ For the following Unicode code point, what is its UTF-8 encoding?
 - U+20AC

- Not all octet sequences are legal encodings
 - "overlong" encodings are illegal
 - example: C0 AF
 - **110**0 00**00 10**10 1111
 - = U+002F (encoding should be 2F)
- □ Classic security bug (IIS 2001)
 - Should reject URL requests with "../.."
 - □ Looked for 2E 2E 2F 2E 2E (in encoding)
 - Accepted "..%c0%af.." (doesn't contain x2F)
 - □ 2E 2E CO AF 2E 2E is ok to allow through
 - After accepting, server then decoded
 - □ 2E 2E CO AF 2E 2E decoded into "../.."
- Moral: String is a sequence of code units
 - But we care about code points

- Concrete invariant (convention)
 - No space, ;, :, & in representation
 - To represent these characters, use %hh instead (hh is ASCII code in hex)
 - □ %20 for space
 - Q: What about % in abstract value?
- □ Recall: correspondence relation

Other (Older) Encodings

- ☐ In the beginning...
- Character sets were small
 - ASCII: only 128 characters (ie 2⁷)
 - 1 byte/character, leading bit always 0
- Globalization means more characters...
 - But 1 byte/character seems fundamental
- Solutions:
 - Use that leading bit!
 - Text data now looks just like binary data
 - Use more than 1 encoding!
 - Must specify data + encoding used

ASCII: 128 Codes

Computer Science and Engineering ■ The Ohio State University

ASCII Code Chart

	0	_ 1	2	_ 3	L 4	5	լ 6	. 7	ر 8 ا	9	L A J	L B J	_ C _ I	D	E	∟ F _ı
0	NUL	SOH	STX	ETX	EOT	ENQ	ACK	BEL	BS	HT	LF	VT	FF	CR	S0	SI
1	DLE	DC1	DC2	DC3	DC4	NAK	SYN	ETB	CAN	EM	SUB	ESC	FS	GS	RS	US
2			:	#	\$	%	&	-	()	*	+	,			/
3	0	1	2	3	4	5	6	7	8	9		;	٧	=	^	?
4	0	Α	В	С	D	Ε	F	G	Н	Ι	J	K	٦	М	N	0
5	Р	Q	R	S	T	U	٧	W	Х	Υ	Z	[/]	^	_
6	`	а	b	С	d	е	f	g	h	i	j	k	ι	m	n	0
7	р	q	r	s	t	u	V	W	х	у	z	{		/ }	~	DEL

6D = Latin small m

ISO-8859 family (eg -1 Latin)

Computer Science and Engineering ■ The Ohio State University

	-0	-1	-2	-3	-4	-5	-6	-7	-8	-9	-A	-B	-C	-D	-E	-F
0-		0001	0002	0003	0004	0006	0008	0007	0008	0009	00DA	0008	000C	0000	000E	000F
1-	0010	0011	0012	0013	0014	0015	0016	0017	0018	0019	001A	0018	001C	001D	001E	001F
2-		!	"	#	\$	%	&	1	()	*	+	,	-		1
3-	0020	1	2	3	4	5	6	7	8	9	002A	002B	< 002C	002D =) 002E	002F
4-	@	A 0031	D 0032	C 0033	D	E	F	G	0038 H	0039 I	J	K	L	M	N	003F
5-	P	Q Q	0042 R	S 0043	T	U	V	W	X	Y	Z	0048	0040	004D	004E	004F
6-	0050	0051 a	0052 b	0053 C	0064 d	0055 e	0056 f	0057 g	0058 h	0059 i	005A j	005B	0050	005D	005E	005F
0-	0060	0061	0062	0063	0064	0065	0066	0067	0068	0069	006A	0068	0060	006D	006E	006F
7-	p	q	r 0072	S	t	u	V	W	X 0078	y	Z	{	007C	} 007D	~ 007E	007F
8-	080	0081	0082	0083	0084	0085	0086	0087	0088	0089	008A	0088	008C	008D	008E	008F
9-	0090	0091	0092	0093	0094	0095	0096	0097	0098	0099	009A	0098	009C	009D	009E	009F
A-	00A0	00A1	¢ 00A2	£	¤	¥	 00A6	§ 00A7	•• 00A8	© 00A9	<u>a</u>	≪ 00AB	DOAC	- 00AD	R)	- 00AF
B-	0	±	2	3	,	μ	¶			1	<u>o</u>	»	1/4	1/2	3/4	i
C-	À	Á	Â	Ã	00В4 Ä	Å	Æ	Ç	È	É	Ê	Ë	Ì	Í	Î	Ï
D-	Ð	Ñ	Ò	Ó	Ô	Õ	Ö	X	Ø	Ù	Ú	Û	Ü	Ý	Þ	В
_	à	á	â	ã	ä	å	æ	0007	è	é	ê	^{ооов} ё	ì	í	î	ï
E-	00E0	00E1	00E2	00E3	00E4	00E5	00E6	Ç	00E8	00E9	00EA	00EB	00EC	00ED	00EE	00EF
F-	ð	ñ	ò	Ó	ô	Õ	Ö 00F6	÷ 00F7	Ø 00F8	ù 00F9	Ú 00FA	û OOFB	ü oofc	ý	$\mathbf{p}_{_{\text{DOFE}}}$	$\ddot{\mathbf{y}}_{_{\text{OOFF}}}$

0-7F match ASCII

reserved (control characters)

A0-FF differ, eg:

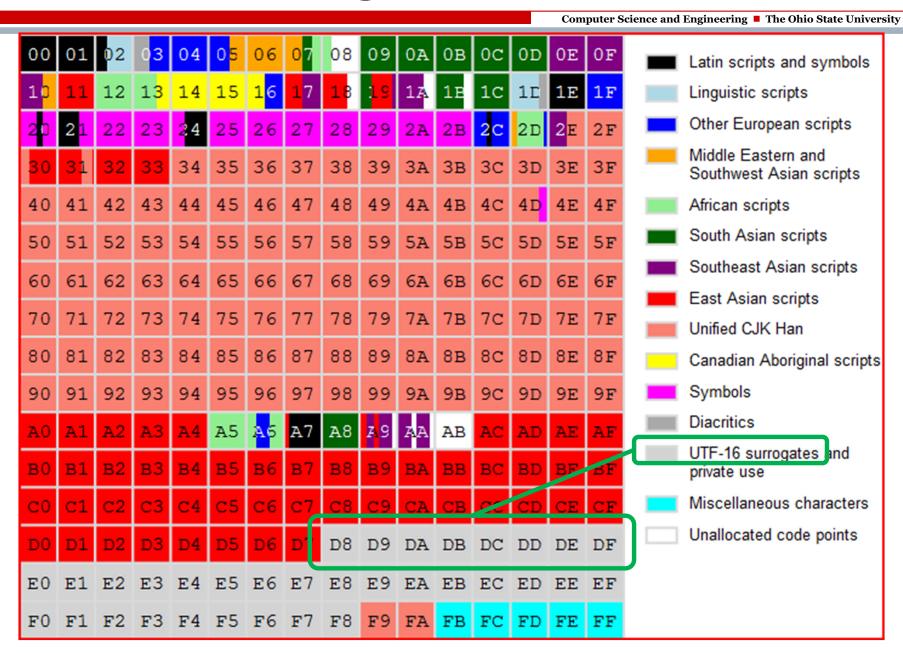
- -1 "Western"
- -2 "East European"
- -9 "Turkish

Windows Family (eg 1252 Latin)

Computer Science and Engineering ■ The Ohio State University

	Windows-1252 (CP1252)															
	х0	х1	x2	х3	х4	х5	х6	х7	х8	х9	хA	хВ	хС	хD	хE	хF
0x	<u>NUL</u>	<u>SOH</u>	<u>STX</u>	<u>ETX</u>	<u>EOT</u>	<u>ENQ</u>	<u>ACK</u>	BEL	<u>BS</u>	<u>HT</u>	<u>LF</u>	<u>VT</u>	<u>FF</u>	<u>CR</u>	<u>so</u>	<u>SI</u>
1x	DLE	DC1	DC2	DC3	DC4	<u>NAK</u>	<u>SYN</u>	<u>ETB</u>	<u>CAN</u>	<u>EM</u>	<u>SUB</u>	<u>ESC</u>	<u>FS</u>	<u>GS</u>	<u>RS</u>	<u>US</u>
2x	<u>SP</u>	İ	"	#	\$	%	&	•	()	*	+	,	-		/
3x	0	1	2	3	4	5	6	7	8	9	:	;	<	=	>	?
4x	@	Α	В	С	D	Е	F	G	Н	I	J	K	L	М	N	0
5x	Р	Q	R	S	Т	U	V	W	X	Υ	Z	[١]	٨	-
6x		а	b	С	d	е	f	g	h	i	j	k		111	n	0
7x	р	q	r	s	t	u	V	w	Х	j	Z	{		}	~	<u>DEL</u>
8x	€		,	f	"		1	‡	^	‰	Š	(Œ		Ž	
9x		6	'		"	•	-	_	~	тм	š	>	œ		ž	Ÿ
Ax	NBSP	i	¢	£	¤	¥	!	§		©	а	«	7		®	-
Вх	0	±	2	3	,	μ	¶		3	1	0	»	1/4	1/2	3/4	¿
Сх	À	Á	Â	Ã	Ä	Å	Æ	Ç	È	É	Ê	Ë	ì	ĺ	Î	Ϊ
Dx	Đ	Ñ	Ò	Ó	Ô	Õ	Ö	×	Ø	Ù	Ú	Û	Ü	Ý	Þ	ß
Ex	à	á	â	ã	ä	å	æ	ç	è	é	ê	ë	ì	í	î	ï
Fx	ð	ñ	Ò	ó	ô	õ	ö	÷	ø	ù	ú	û	ü	ý	þ	ÿ

92 = apostrophe


<u>Labels</u>
"unicode-1-1-utf-8"
"utf-8"
"utf8"
"ansi_x3.4-1968"
"ascii"
"cp1252"
"cp819"
"csisolatin1"
"ibm819"
"iso-8859-1"
"is o-ir-100"
"iso8859-1"
"iso88591"
"iso_8859-1"

Early Unicode and UTF-16

- Unicode started as 2¹⁶ code points
 - The BMP of modern Unicode
 - Bottom 256 code points match ISO-8859-1
- □ Simple 1:1 encoding (UTF-16)
 - Code point <--> 16-bit code unit
 - Simple, but leads to bloat of ASCII text
- □ Later added code points *outside* of BMP
 - A pair of words (surrogate pairs) carry 20-bit payload split, 10 bits in each word
 - First: 1101 10xx xxxx xxxx (xD800-DBFF)
 - Second: 1101 11yy yyyy yyyy (xDC00-DFFF)
- Consequence: U+D800 to U+DFFF became reserved code points in Unicode
 - And now we are stuck with this legacy, even for UTF-8

□ JavaScript and UTF-16 let $x = "\{u\{1f916\}\}"$ // robot face x.codePointAt(0).toString(16) // number of code units x.length x.charCodeAt(0).toString(16); x.charAt(0); // char from 1 code unit Ruby and string encodings $x = "\{u\{1f916\}\}"$ x.length x.bytes.map { |b| b.to s(2) } x.encoding x.encode! Encoding::UTF 16 x.bytes.map { |b| b.to s(16) }

Basic Multilingual Plane

- A multi-byte representation must distinguish between big & little endian
 - Example: 00 25 00 25 00 25
 - "%%%" if LE, "— —" if BE
- One solution: Specify encoding in name
 - UTF-16BE or UTF-16LE
- Another solution: require byte order mark (BOM) at the start of the file
 - U+FEFF (ZERO WIDTH NO BREAK SPACE)
 - There is no U+FFFE code point
 - So FE FF → BigE, while FF FE → LittleE
 - Not considered part of the text

- □ Should we add a BOM to the start of UTF-8 files too?
 - UTF-8 encoding of U+FEFF is EF BB BF
- Advantages:
 - Forms magic-number for UTF-8 encoding
- Disadvantages:
 - Not backwards-compatible to ASCII
 - Existing programs may no longer work
 - E.g., In Unix, shebang (#!, i.e. 23 21) at start of file is significant: file is a script #! /bin/bash

ZWJ: Zero Width Joiner

- Using U+FEFF as ZWNBSP deprecated
 - Reserved for BOM uses (at start of file)
- □ Alternative: U+200D ("zwidge")
- Joined characters may be rendered as a single glyph
 - Co-opted for use with emojis
- □ Example: (1 "character" in Twitter X)
 - U+1F3F4 U+200D U+2620
 - WAVING BLACK FLAG, ZWJ, SKULL AND CROSSBONES

- What is a "text" file? (vs "binary")
 - Given a file, how can you tell which it is?
- A JavaScript program reads in a 5MB file of English prose into a string. How much memory does the string need?
- □ How many characters does s contain?

```
let s = . . . // JavaScript
console.assert (s.length() == 7) // true
```

- Which is better: UTF-8 or UTF-16?
- □ What's so scary about:

```
..%c0%af..
```

Summary

- Text vs binary
 - In pre-historic times: most significant bit
 - Now: data is data
- Unicode code points
 - Integers U+0000..U+10FFFF
 - BMP: Basic Multilingual Plane
- □ UTF-8
 - A variable-length, self-synchronizing encoding of unicode code points
 - Backwards compatible with ISO 8859-1, and hence with ASCII too