
Computer Science and Engineering  College of Engineering  The Ohio State University

Rails:
Views and Controllers II

Lecture 32

Computer Science and Engineering  The Ohio State University

Recall: Rails Architecture

app/
controllers/

course_roster_controller.rb
CourseRosterController
#wake_up

GET /hi

app/
views/

course_roster/
wake_up.html.erb

Computer Science and Engineering  The Ohio State University

Wiring Views and Controllers
 A controller is just an ordinary Ruby class

 Extends ApplicationController
class CourseRosterController <

ApplicationController
 Location: app/controllers/
 Filename: course_roster_controller.rb

 Actions are methods in that class
def wake_up
...
end

 A view is an HTML page (kind of) that corresponds
to that action
 Location: app/views/course_roster/
 Filename: wake_up.html.erb
 Has access to instance variables (e.g., @student) of

corresponding controller!

Computer Science and Engineering  The Ohio State University

Example: books/show.html.erb
<p style="color: green"><%= notice %></p>

<%= render @book %>

<div>
<%= link_to "Edit this book",

edit_book_path(@book) %> |
<%= link_to "Back to books", books_path %>

<%= button_to "Destroy this book", @book,
method: :delete %>

</div>

Computer Science and Engineering  The Ohio State University

Creating a Response

 There are 3 ways a controller action can
create the HTTP response:
1. Do nothing: defaults are used
2. Call render method
3. Call redirect method

 The first 2 result in HTTP status 200 (OK)
 Body of response is the HTML of the view

 The 3rd results in HTTP status 302
(temporary redirect)

 Different formats for body of response
are possible (HTML, JSON, plain text…)

Computer Science and Engineering  The Ohio State University

1: Default Response

 If the action does not call render (or
redirect), then render is implicitly
called on corresponding view
class BooksController <

ApplicationController
def index

@books = Book.all
end

end

 Results in call to render
app/views/books/index.html.erb

Computer Science and Engineering  The Ohio State University

2: Explicitly Calling Render
 Argument: action whose view should be

rendered
def wake_up

render :show # or render "show"
end
def show ...

 Action (show) does not get executed
 Action could be from another controller

render 'products/show'
 Can return text (or json or xml) directly

render plain: "OK"
render json: @book # calls to_json
render xml: @book # calls to_xml

 Note: render does not end action, so don't
call it twice (“double render error”)

Computer Science and Engineering  The Ohio State University

3: Calling Redirect
 Sends response of an HTTP redirect (3xx)
 Default status: 302 (temporary redirect)
 Override for permanent redirection (301)

 Consequence: client (browser) does
another request, this time to the URL
indicated by the redirect response
 New request is a GET by default

 Need URL, can use named route helpers
redirect_to user_url(@user)
redirect_to users_path
redirect_to edit_user_path(@user)
redirect_to @user # calls url_for(@user)

 Or :back to go back in (client’s) history

Computer Science and Engineering  The Ohio State University

Redirect vs Render

 Similarity
 Point to a different view
 Neither ends the action
render… and return # force termination

 Difference
 Redirect entails 2 round-trips: request

action response; request action response
 Redirect requires a URL as argument,

Render takes a view (action)
 Common usage for Redirect: POST-

Redirect-GET pattern

Computer Science and Engineering  The Ohio State University

GET Blank Form, POST the Form

GET "a blank form"

POST /students
lname: …etc

Computer Science and Engineering  The Ohio State University

GET Blank Form, POST the Form

POST /students
lname: …etc

?

Computer Science and Engineering  The Ohio State University

GET Blank Form, POST the Form

POST /students
lname: …etc

Computer Science and Engineering  The Ohio State University

GET Blank Form, POST the Form

POST /students
lname: …etc

Computer Science and Engineering  The Ohio State University

POST-Redirect-GET Pattern

Computer Science and Engineering  The Ohio State University

Example of POST-Redirect-GET
class BooksController <

ApplicationController

def create
@book = Book.new(book_params)
if @book.save
redirect_to book_url(@book),
notice: 'Book successfully created'

else
render :new

end
end

Computer Science and Engineering  The Ohio State University

Example of POST-Redirect-GET
class BooksController <

ApplicationController

def create
@book = Book.new(book_params)
if @book.save
redirect_to book_url(@book),
notice: 'Book successfully created'

else
render :new

end
end

Computer Science and Engineering  The Ohio State University

Flash

 A hash returned with redirect response
 Set by controller action issuing redirect
flash[:referral_code] = 1234
 Common keys can be assigned in redirect
redirect_to books_url notice: '...'
redirect_to books_url alert: '...'

 Flash included in client’s next request
 Flash available to next action’s view!

<p id="info"><%= flash[:warn] %>…
 But: flash.now available to first view!
flash.now[:notice] = 'no such book'

Computer Science and Engineering  The Ohio State University

Flash: Set, Use, Clear

set flash

use flash
(then clear)

Computer Science and Engineering  The Ohio State University

Using Flash in View
display just notice message
<p id="notice"><%= notice %></p>

display all the flash messages
<% if flash.any? %>
<div id="banner">

<% flash.each do |key, message| %>
<div class="flash <%= key %>">
<%= message %>

</div>
<% end %>

</div>
<% end %>

Computer Science and Engineering  The Ohio State University

Example of Render vs Redirect
class BooksController <

ApplicationController

def update
@book = Book.find(params[:id])
if @book.update(book_params)
redirect_to book_url(@book),
notice: 'Book successfully created'

else
render :edit

end
end

Computer Science and Engineering  The Ohio State University

Why Is This Wrong?
class BooksController <

ApplicationController

def update
@book = Book.find(params[:id])
if @book.update(book_params)
redirect_to book_url(@book),
notice: 'Book successfully created'

else
render :edit,
notice: 'Try again.'

end
end

Computer Science and Engineering  The Ohio State University

Fix: Use Flash.now
class BooksController <

ApplicationController

def update
@book = Book.find(params[:id])
if @book.update(book_params)
redirect_to book_url(@book),
notice: 'Book successfully created'

else
flash.now[:notice] = 'Try again.'
render :edit

end
end

Computer Science and Engineering  The Ohio State University

Code Duplication
class BooksController < ApplicationController

def show
@book = Book.find(params[:id])

end

def edit
@book = Book.find(params[:id])

end

def update
@book = Book.find(params[:id])
. . .

end

Computer Science and Engineering  The Ohio State University

DRY, aka Single-Point-of-Control
class BooksController < ApplicationController

before_action :set_book,
only %i[show edit update destroy]

def show # method is now empty!
end

def edit # method is now empty!
end

and other actions…

private
def set_book

@book = Book.find(params[:id])
end

end

Computer Science and Engineering  The Ohio State University

Sanatizing Inputs
def update
if @book.update(book_params)

redirect_to book_url(@book), notice: 'Success!'
else

render :edit
end

end

private
def set_book
@book = Book.find(params[:id])

end

def book_params
params.require(:book).permit(:title,

:summary)
end

Computer Science and Engineering  The Ohio State University

Recall Partials
 A blob of ERb used in multiple views
 Examples
 Static header used throughout site
 Dynamic sidebar used in many places

 Include in a template (or layout) with:
<%= render 'menu' %>
<%= render 'users/icon' %>

 Filename of partial has "_" prefix
 Default location: app/views

app/views/_menu.html.erb
 Organize into subdirectories with good names

app/views/users/_icon.html.erb

Computer Science and Engineering  The Ohio State University

Example: views/layouts/applic…
<!DOCTYPE html>
<html>

… etc
<body>
<%= render 'layouts/header' %>
<div class="container">
<%= yield %>
<%= render 'layouts/footer' %>

</div>
</body>
</html>

Computer Science and Engineering  The Ohio State University

Example: views/layouts/_footer
<footer class="footer">
<small>
OSU

</small>
<nav>

<%= link_to "About",

about_path %>
<%= link_to "Contact",

contact_path %>

</nav>
</footer>

Computer Science and Engineering  The Ohio State University

Recall: Tricks with Partials

 Content of partial can be customized
with arguments in call

 In call: pass a hash called :locals
<%= render partial: "banner",

locals: { name: "Syllabus,
amount: @price } %>

 In partial: access hash with variables
<h3> <%= name %> </h3>
<p> Costs <%= "$#{amount}.00" %></p>

Computer Science and Engineering  The Ohio State University

Parameter Passing to Partials
 Partial also has one implicit local variable
 In the partial, parameter name same as

partial
in partial nav/_menu.html
<p> The price is: <%= menu %></p>

 Argument value assigned explicitly
<%= render partial: 'nav/menu',

object: cost %>

 Idiom: Begin partial by renaming this
parameter

in partial nav/_menu.html
<% price = menu %>

Computer Science and Engineering  The Ohio State University

Example: books/show.html.erb
<p style="color: green"><%= notice %></p>

<%= render @book %>

<div>
<%= link_to "Edit this book",

edit_book_path(@book) %> |
<%= link_to "Back to books", books_path %>

<%= button_to "Destroy this book", @book,
method: :delete %>

</div>

Computer Science and Engineering  The Ohio State University

Partial: books/_book.html.erb
<div id="<%= dom_id book %>">
<p>
Title:
<%= book.title %>

</p>

<p>
Author:
<%= book.author %>

</p>

</div>

Computer Science and Engineering  The Ohio State University

Demo: Scaffolding

 Generate many things at once
 Migration for table in database
 Model for resource
 RESTful routes
 Controller and corresponding methods
 Views for responses

 Command
$ rails g scaffold Student lname:string
buckid:integer
$ rails db:migrate
$ rails server

Computer Science and Engineering  The Ohio State University

Summary
 Controller generates a response
 Default: render corresponding view
 Explicit: render some action's view
 Explicit: re-direct
 POST-redirect-GET (aka “get after post”)
 Flash passes information to next action

 Reuse of views with partials
 Included with render (e.g., <%= render…)
 Filename is prepended with underscore
 Parameter passing from parent template
 Can iterate over partial by iterating over a

collection

Computer Science and Engineering  The Ohio State University

Partials With Collections
 Iteration over partials is common

<% for item in @items %>
<%= render partial: 'item_brief',

object: item %>
<% end %>

 Short-hand: Replace above with
<%= render partial: 'item_brief',

collection: @items %>
 Renders partial once for each element
 Initializes partial local variables each time

 item_brief (the member of the collection)
 item_brief_counter (integer 0..size of collection)

 Can also add separator between each partial
<%= render partial: 'item_brief',

collection: @items,
spacer_template: 'line_space' %>

Computer Science and Engineering  The Ohio State University

Partial Super Shorthands
 For a model instance (e.g. @book) in a

template
<%= render @book %>

 Includes _book.html.erb partial
 Passes in @book to partial (as :object)
 Value available as local variable book in partial

 For a model collection (e.g. @books) in a
template

<%= render @books %>
 Call render multiple times, once/member
 Each call uses same partial (_book.html.erb)
 Each call passes in different member as argument
 Value available as local variable book in partial

 Returns nil if collection is empty
<%= render @books || 'No books to see.' %>

