
Computer Science and Engineering  College of Engineering  The Ohio State University

Rails:
Routes

Lecture 30

Computer Science and Engineering  The Ohio State University

Recall: Rails Architecture

Computer Science and Engineering  The Ohio State University

Recall: Passing Args with HTTP
 GET

GET /passwords/?num=5&len=8&format=plain
HTTP/1.1
Host: www.random.org

 POST
POST /passwords/ HTTP/1.1
Host: www.random.org
Content-Type: application/x-www-form-
urlencoded
Content-Length: 24

num=5&len=8&format=plain

Computer Science and Engineering  The Ohio State University

Configuration

 Need to map an HTTP request (verb, URL,
parameters) to an application action (a
method in a Ruby class)
 Framework invokes the method, passing in

parameters from HTTP request as arguments
 Results in an HTTP response, typically with an

HTML payload, sent back to client's browser
 These mappings are called routes
 Defined in config/routes.rb
 Ruby code, but highly stylized (another DSL)
 Checked top to bottom for first match

Computer Science and Engineering  The Ohio State University

Basic Route
 Pattern string and application action
 In config/routes.rb
 Pattern string usually contains segments

 Example route
get 'status/go/:system/memory/:seg',

to: 'reporter#show'
 Matches any HTTP request like

GET /status/go/lander/memory/0?page=3
 Result:
 Instantiates ReporterController
 Invokes show method on that new instance
 Provides a hash-like object called params
params == { system: "lander",

seg: "0",
page: "3" }

Computer Science and Engineering  The Ohio State University

Default Values
 Special segments

 :controller - the controller class to use
 :action - the method to invoke in that controller

 Example route
get ':controller/go/:action/:system'

 Matches any HTTP request like
GET /reporter/go/show/lander?page=3

 Result:
 Instantiates ReporterController
 Invokes show method on that new instance
 Provides an object called params
params == { system: "lander",

page: "3",
also :controller and :action }

 Note: Not recommended
 Opens app up too much to scary internet

Computer Science and Engineering  The Ohio State University

Customizing Routes

 Recognize different HTTP verb(s)
 get, put, post, delete
 Alternative: match via: [:get, :post]

 Optional segments with ()
get ':controller(/:action(/:id))'

 Default values for params
get 'photos/:id', to: 'photos#show',

defaults: { format: 'jpg' }

Computer Science and Engineering  The Ohio State University

REST

 REpresentational State Transfer
 An architectural style for web applications
 Maps database operations to HTTP requests

 Small set of database operations (CRUD)
 Create, Read, Update, Delete

 Small set of HTTP verbs, with fixed
semantics (e.g., idempotence)
 GET, POST, PUT, DELETE

 The protocol is stateless
 Resource: bundle of (server-side) state
 Each resource is identified by a URL

Computer Science and Engineering  The Ohio State University

Resources

 A resource could be an individual member
 Example: a single student
 Corresponds to a row in a table

 A resource could be a collection of items
 Example: a set of students
 Corresponds to a table

 In REST, resources have URLs
 Each member element has its own URL

http://quickrosters.com/students/42

 Each collection has its own URL
http://quickrosters.com/students

Computer Science and Engineering  The Ohio State University

Read Collection: GET

GET /students HTTP/1.1
Host: quickrosters.com

Request

Computer Science and Engineering  The Ohio State University

Read Collection: GET

Request

GET /students HTTP/1.1
Host: quickrosters.com

Computer Science and Engineering  The Ohio State University

Read Collection: GET

Computer Science and Engineering  The Ohio State University

HTML Source (GET Collection)
…
<h1>Students</h1>

<div id="students">
<div id="student_1">

<p> Fname: Marco </p>
<p> Lname: Pantani </p>
<p> Buckid: 22352022 </p>

</div>
<p> Show this student </p>
<div id="student_2">

<p> Fname: Primo </p>
<p> Lname: Carnera </p>
<p> Buckid: 334432 </p>

</div>
<p> Show this student </p>
…
New student

</div>
…

Computer Science and Engineering  The Ohio State University

Read Member: GET

GET /students/2

Request

Computer Science and Engineering  The Ohio State University

Minimal Set of Routes (R)

Member
/students/42

Collection
/students

Show info about a memberList all membersGET

PUT

POST

DELETE

Computer Science and Engineering  The Ohio State University

Minimal Set of Routes (CR)

Member
/students/42

Collection
/students

Show info about a memberList all membersGET

PUT

POST

DELETE

 How to map “create member” action?
 Member doesn’t exist  target is … ?
 Creation is not idempotent  verb is … ?

Computer Science and Engineering  The Ohio State University

Minimal Set of Routes (CR)

Member
/students/42

Collection
/students

Show info about a memberList all membersGET

PUT

POST

DELETE

 How to map “create member” action?
 Member doesn’t exist  target is collection
 Creation is not idempotent  verb is post

Computer Science and Engineering  The Ohio State University

Minimal Set of Routes (CR)

Member
/students/42

Collection
/students

Show info about a memberList all membersGET

PUT

Create a new memberPOST

DELETE

 How to map “create member” action?
 Member doesn’t exist  target is collection
 Creation is not idempotent  verb is post

Computer Science and Engineering  The Ohio State University

Minimal Set of Routes (CRU)

Member
/students/42

Collection
/students

Show info about a memberList all membersGET

PUT

Create a new memberPOST

DELETE

 How to map “update member” action?
 Target is… a member
 Update overwrites, so it is idempotent…

Computer Science and Engineering  The Ohio State University

Minimal Set of Routes (CRU)

Member
/students/42

Collection
/students

Show info about a memberList all membersGET

Update memberPUT

Create a new memberPOST

DELETE

 How to map “update member” action?
 Target is a member
 Update overwrites, so it is idempotent…

Computer Science and Engineering  The Ohio State University

Minimal Set of Routes (CRUD)

Member
/students/42

Collection
/students

Show info about a memberList all membersGET

Update memberPUT

Create a new memberPOST

Delete this memberDELETE

 Delete action destroys a member

Computer Science and Engineering  The Ohio State University

Minimal Set of Routes

Member
/students/42

Collection
/students

Show info about a memberList all membersGET

Update memberPUT

Create a new memberPOST

Delete this memberDELETE

 Implications
 You can't delete a collection
 No idempotent operations on collection

Computer Science and Engineering  The Ohio State University

Typical Workflow: Delete

 How does one destroy a member?
 Need to issue an HTTP request:
DELETE /students/4

 Protocol:
 GET the member to see the details
 Click a button on that page to issue a

DELETE for that member

Computer Science and Engineering  The Ohio State University

GET Member, Then DELETE

GET /students/2

Request

DELETE /students/2

Computer Science and Engineering  The Ohio State University

HTML of Member (for DELETE)
…
<div id="student_2">

<p> Fname: Primo </p>
<p> Lname: Carnera </p>
<p> Buckid: 334432 </p>

</div>
<div>

Edit this student |
Back to students
<form class="button_to"

method="post"
action="/students/2">

<input type="hidden" name="_method" value="delete" />
<button type="submit">Destroy this student</button>

</form>
</div>

Computer Science and Engineering  The Ohio State University

Typical Workflow: Create

 How does one issue a POST on
collection?
 GET a (blank) form
 Fill in fields of form
 Click a button to submit, resulting in the

POST
 That first GET is a new route
 GET on the collection
 But instead of a list of members, the

result is a form to be filled in and
submitted

Computer Science and Engineering  The Ohio State University

GET Blank Form, POST the Form

GET "a blank form"

POST /students
lname: …etc

Computer Science and Engineering  The Ohio State University

Standard Set of Routes

Member
/students/42

Collection
/students

1. Show info about a member1. List all members
2. Form for entering a
new member's data

GET

Update memberPUT

Create a new memberPOST

Delete this memberDELETE

Computer Science and Engineering  The Ohio State University

HTML of Collection
…
<h1>Students</h1>

<div id="students">
<div id="student_1">

<p> Fname: Marco </p>
<p> Lname: Pantani </p>
<p> Buckid: 22352022 </p>

</div>
<p> Show this student </p>
<div id="student_2">

<p> Fname: Primo </p>
<p> Lname: Carnera </p>
<p> Buckid: 334432 </p>

</div>
<p> Show this student </p>
…
New student

</div>
…

Computer Science and Engineering  The Ohio State University

Typical Workflow: Update

 How does one issue a PUT on a
member?
 GET a (populated) form
 Edit the fields of the form
 Click a button to send, resulting in the

PUT
 That first GET is a new route
 GET on a member
 But instead of a display of information

about that member, the result is a
populated form to modify and submit

Computer Science and Engineering  The Ohio State University

PUT /students/4
lname: …etc

GET Filled Form, PUT the Form

GET "a populated form"

Computer Science and Engineering  The Ohio State University

Standard Set of Routes

Member
/students/42

Collection
/students

1. Show info about a member
2. Form for editing an existing

member's data

1. List all members
2. Form for entering a
new member's data

GET

Update memberPUT

Create a new memberPOST

Delete this memberDELETE

Computer Science and Engineering  The Ohio State University

HTML of Member
…
<div id="student_2">

<p> Fname: Primo </p>
<p> Lname: Carnera </p>
<p> Buckid: 334432 </p>

</div>
<div>

Edit this student |
Back to students
<form class="button_to"

method="post"
action="/students/2">

<input type="hidden" name="_method" value="delete" />
<button type="submit">Destroy this student</button>

</form>
</div>

Computer Science and Engineering  The Ohio State University

Rails Resource-Based Routes
 For a resource like :students, the action pack

includes
 1 controller (StudentsController)
 7 routes (each with a method in controller)
 4 Views (list of students, show 1 student, new, edit)

Response
(View)

MethodResourceURLHTTP
Verb

list allindexCollection/studentsGET

show onecreateCollection/studentsPOST

blank formnewCollection/students/newGET

show oneshowMember/students/3GET

filled formeditMember/students/3/editGET

show oneupdateMember/students/3PUT

list alldestroyMember/students/3DELETE

Computer Science and Engineering  The Ohio State University

Defining Resource-Based Routes

 In RosterTool app’s config/routes.rb
Rails.application.routes.draw do
resources :students
resources :faculty

end

Computer Science and Engineering  The Ohio State University

Customizing Routes
 To change which 7 routes are created

resources :students, except:
[:update, :destroy]

resources :grades, only: [:index, :show]
 To specify a particular controller

resources :students, controller: 'ugrads'
 To rename certain actions

resources :students, path_names:
{ create: 'enroll' }

 To add more routes to standard set
 Add GET /students/:id/avatar (i.e. on member)
 Add GET /students/search (i.e. on collection)
resources :students do
get 'avatar', on: :member
get 'search', on: :collection

end

Computer Science and Engineering  The Ohio State University

Segment Keys
 URL request has arguments for controller
 Example: products/42
 Pattern string: 'products/:id'

 Segment key gets value when route
matches

 Controller gets a hash (called params) of
segment keys and their values
 Example: params[:id] is '42'

 Common case: Look up an item by id
def set_product
@product = Product.find(params[:id])

end

Computer Science and Engineering  The Ohio State University

Recognition vs Generation
 Dual problems
 Recognize a URL (request for an action)
 Generate a URL (a hyperlink or redirect)

 Routes used for both!
 For generation, route must be named

get 'status/:seg', to: 'reporter#show',
as: :info

 Results in two helpers (_path, _url)
info_path(4)#=> "/status/4"
info_url(4) #=> "http://faces.com/status/4"

 Used with link_to to generate hyperlinks
link_to 'S', info_path(4), class: 'btn'
#=> "S"

Computer Science and Engineering  The Ohio State University

Helper Methods for Resources
 Resource-based routes have names

photos_path #=> /photos
photos_url #=> http://faces.com/photos
new_photo_path #=> /photos/new
photo_path(:id) #=> /photos/4
edit_photo_path(:id) #=> /photos/4/edit

MethodResourceURLHTTPName

indexCollection/photosGETphotos

createCollection/photosPOST

newCollection/photos/newGETnew_photo

showMember/photos/3GETphoto

editMember/photos/3/editGETedit_photo

updateMember/photos/3PUT

destroyMember/photos/3DELETE

Computer Science and Engineering  The Ohio State University

Debugging Routes and Helpers
 To see the full list of routes

$ rails routes
Prefix Verb URI Pattern Contr#Action
info GET /status/:seg reporter#show

photos GET /photos photos#index
POST /photos photos#create

photo GET /photo/:id photos#show
edit_photo GET /photos/:id/edit …
…etc…

 To see/use helpers in the console
$ rails console
> app.edit_photo_path(42)
=> "/photos/42/edit"
> helper.link_to 'Click here',

app.edit_photo_path(42)
=> "Click here"

Computer Science and Engineering  The Ohio State University

Root Route

 With no matching route, GET for
http://example.com gets index.html
from application's public directory

 To customize landing page, 2 choices:
 Create public/index.html
 Add root route to config/routes.rb,

pointing to a controller#action (better)
root to: "welcome#index"

Computer Science and Engineering  The Ohio State University

Summary

 REST and CRUD
 Create, read, update, destroy
 Map data to resources
 Map actions to HTTP requests (verb +

URL)
 Routes
 Connect HTTP request to specific method

in a controller class
 Defined in config/routes.rb
 Resource based, or match-based
 Dual problem: recognition and generation

Computer Science and Engineering  The Ohio State University

Singleton Resources
 Declared with singular syntax

resource :system
 You get only 1 resource, not 2
 Controller still plural (e.g., SystemsController)
 URLs are singular (e.g., /system/edit

 Only 6 standard routes
 No index collection action to list members
 POST /system -> create
 GET /system/new -> new
 GET /system/edit -> edit
 GET /system -> show
 PUT /system -> update
 DELETE /system -> destroy

