JavaScript:
Objects, Methods, Prototypes

Lecture 25

C()mputer Science and Englneerlng B The Ohio State Uanel'Slty

Property: a key/value pair

B aka name/value pair

Object: a partial map of properties
B Keys must be unique

Creating an object, literal notation

let myCar = { make: "Acura",
year: 1996,
plate: "NKR463" };

[0 access/modify an object's properties:
myCar .make = "Ford"; // cf. Ruby
myCar | "year"] = 2006;

let str = "ate";

myCar["pl" + str] == "NKR463"; //=> true

Object Properties

Computer Science and Engineering B The Ohio State University

myCar

: N
! "Ford" :
| 3 0
I (Al
I year 2006 :
| S 2
[(11
| plate | "NKR463" | !
| N J
| |
| |
| |
| |
N — J

Arrays vs Associative Arrays

sity

Computer Science and Engineering B The Ohio State Univer:

4
"hi"

|

|

|

|

|

|

|

| Q
| O
I 0
|

|

|

.

greeting

Dynamic Size, Just lee Arrays

The Ohio sity

Objects can grow
myCar.state

"OH"; // 4 properties
let myBus = {};

myBus.driver = true; // adds a prop
myBus.windows = [2, 2, 2, 2];

Objects can shrink
delete myCar.plate;

// myCar is now { make: '"Ford",
// year: 2006, state: "OH" }

Object Properties

Computer Science and Engineering B The Ohio State University

myCar

: N
! "Ford" :
| 3 0
I (Al
I year 2006 :
| S 2
[(11
| plate | "NKR463" | !
| N J
| |
| |
| |
| |
N — J

Object Properties

myCar

Y
"Ford" :

C J 1

4) I

2006 |

\ J 1

4) I
"NKR463" | |

N J 1

4) I

llOH" :

g 1
e — |

Computer Science and Engineering B The Ohio State University

myCar.state = "OH";

Object Properties

Computer Science and Engineering B The Ohio State University

myCar delete myCar.plate;

Testing Presence of Key

Compu

Boolean operator: in
propertyName in object

Evaluates to true iff object has the
indicated property key

"make" in myCar //=> true

"speedometer" in myCar //=> false
"OH" in myCar //=> false

B Property names are strings

Iterating Over Properties

Iterate using for...in syntax

for (let property in object) {
..object|[property]..

}

Notice [] to access each property

for (let p in myCar) {
document.write(S{p}: S${myCar[pl})

}

Loop over iterable (eg array) with for...of
for (let elt of roster) {
document.write (name: ${elt}) ;

}

Destructuring Assignm

Comp

cience and Enginee

S ring B The Ohio State University

Objects can have many properties, and
many levels of nesting

const result = someGiantObject() ;

// only want 2 of result's properties
report (result.car) ;

combine (result.car, result.bus);

Alternative: destructuring assignment
let {car, bus} = someGiantObject() ;
report (car) ;

combine (car, bus);

let {car: ¢, bus: b} = someGiantObject();
combine (c, b);

B Eliminates unneeded result variable

B Simplifies access to properties of interest

Computer Science and Engineering B The Ohio State University

'he value of a property can be:
B A primitive (boolean, number, string, null...)
B A reference (object, array, function)
let temp = function (sound) {
play (sound) ;
return O;

}

myCar. = temp;
More succinctly:
myCar. = function(sound) {

play (sound) ;
return O;

Example: Method

let myCar = ({
make: "Acura'",
year: 1996,
plate: "NKR462",
honk: function (sound) {
play (sound) ;

return O;

Example: Method (with Sugar)

Com

let myCar = ({
make: "Acura',
year: 1996,
plate: "NKR462",
honk (sound) {
play (sound) ;

return O;

Object Properties

Computer Science and Engineering B The Ohio State University

myCar

year 1996

plate | "NKR462"

honk A— J

) play (sound) ;

nreturn O0; ”

Y

Y4
AN
[N N _ N _ B B _ B N B B B B B B N B B |

Keyword “this” in Functions

Computer Science and Engineering B The Ohio State University

O Recall distinguished formal parameter
x.f£(y, z); //x is the distinguished argmt.

O Inside a function, keyword “this”
function () {
return this.plate + this.year;

}
O At run-time, “this” is the distinguished argument of
the invocation
myCar = { plate: "NKR462", year: 1996 };
yourCar = { plate: 340, year: 2013 };
myCar .register = ;
yourCar.info = ;
myCar.register () ; //=> "NKR4621996"
yourCar.info () ; //=> 2353

O Aside: arrow functions work differently
B Do not have their own this, use enclosing lexical scope

Object Properties

Computer Science and Engineering B The Ohio State University

myCar yourCar

year 1996

register A\
S J

I |
e e e e e o o o s o o

report

Constructors

Computer Science and Engineering B The Ohio State Universi

Any function can be a constructor

When calling a function with “new”;
1. Make a brand new (empty) object

2. Call the function, with the new object as the
distinguished parameter

3. Implicitly return the new object to caller

A “constructor” often adds properties to the
new object simply by assigning them
function Dog(name) {
this.name = name; // adds 1 property
// no explicit return
}
let furBall = new Dog("Rex");

Naming convention: Functions intended to
be constructors are capitalized

Example

function Circle(x, y, radius) {
this.centerX = x;
this.centerY = y;
this.radius = radius;
this.area = function() {
return Math.PI * this.radius *

this.radius;

}
let ¢ = new Circle (10, 12, 2.45);

Computer Science and Engineering B The Ohio State Universi

Creating a Circle Object

Comput

o State University

let ¢ = new Circle (10, 12, 2.45);

Circle

,this.centerX = x;
"this.centerY =V,

Creating a Circle Object

Comput

o State University

let ¢ = new Circle (10, 12, 2.45);

Circle

,this.centerX = x;
"this.centerY =V,

Creating a Circle Object

Computer Science and Engineering B The Ohio State University

let ¢ = new Circle (10, 12, 2.45);

Circle

I- ———————————————— "
! S !
I centerX| 10 I
| I ~
: — : . this.centerX = x; ;
1 centerY 12 I "this.centerY = y; u
I I I i
: >—< : "::::EE%::::::::::I:
! radius | 2.45 I

I
! I
: area I N e e e e e ====)
: I ,return Math.PI * u
I I 'th1s radius * "

"thlS radius "

Creating a Circle Object

Compter Sehence and Engincering W The Ot State University
C@ let ¢ = new Circle (10, 12, 2.45);
Circle

L —

I centerX| 10 ! i

! — : . this.centerX = x; ;
:centeﬁ(12 : "this.centerY =y n
: >—< : "::::EE%::::::::::
! radius | 2.45 !

I I

| area | izoturn Math BT * .

| I 'th1s radius * T

"thlS radius "

Creating a Circle Object

Computer Science and Engineering B The Ohio State University

let ¢ = new Circle (10, 12, 2.45);

Circle

. W —— n
: M :
I centerX| 10 I
| I ~
: —— : . this.centerX = x; ;
1 centerY 12 I "this.centerY = y; u
I I I i
: >—< : ::====EEC==========:I:I
! radius | 2.45 I

I
! I
: area I N e e e e e ====)
: I ,return Math.PI * u
I : 'th1s radius * "

"thlS radius "

Creating Many Circle Objects

Computer Science and Engineering B The Ohio State University

for (let 1 = 0; i < 1000; i++) {
new Circle (0, 0, 1i);

}
Circle

. W —— n
: M :
I centerX| 10 I
| I ~
i I 1 = .
| — : , this.centerX x;j o
1 centerY 12 I "this.centerY = y; u
I I I i
: >—< : ::====EEC===========|:
! radius | 2.45 I

I
! I
: area I N e e e e e ====)
: I ,return Math.PI * u
I : dthls radius * "

nthis.radius "
N sz =z=z=z=z=z==z=z=z====5%
Z‘ A
How many of these?

Prototypes

Every object has a prototype
B A hidden, indirect property ([[Prototype]])

What is a prototype?
B Just another object! Like any other!

When accessing a property (i.e. obj.p)
B First look for p in obj
B If not found, look for p in obj's prototype

B If not found, look for p in that object's
prototype!

B And so on, until reaching the basic system
object

=== ffic=A"

sity

toString

hasOwnProperty

—
s
___ktc. 1

Computer Science and Engineering B The Ohio State Univer:

L 8 N N _§B _§N _§N _§N |
(

N

r
I
I

~

llhill
3.14

pi

Prototype Chaining

.
greeting

Class-Based Inheritance

Computer Science and Engineering B The Ohio State University

interfaces extends
implements
classes > end >
- ~_—— extends o
static static static

Instantiates

objects

B B

Prototype: Get vs Set of Proprty

Co

Consider two objects
let dog = { name: "Rex", age: 3 };

let pet = { color: "blue" };
Assume pet is dog's prototype

Delegation to Prototype

Computer Science and Engineering B The Ohio State University

dog

e e e e

Prototype: Get vs Set of Proprty

Co

Consider two objects
let dog = { name: "Rex", age: 3 };
let pet = { color: "blue" };

Assume pet iS dog's prototype

// dog.name == ?
// dog.color == ?
pet.color = "brown";

// dog.color is ?
dog.color = "green";
// dog.color is ?
// pet.color is ?

Delegation to Prototype

Computer Science and Engineering B The Ohio State University

dog

e e e e

dog.color == ?
// get follows prototype chain

Delegation to Prototype

Computer Science and Engineering B The Ohio State University

dog pet.color = "brown";

// set changes object

e e e e

dog.color == ?
// get follows prototype chain

Delegation to Prototype

Computer Science and Engineering B The Ohio State University

dog.color = '"green";
// set changes object!

dog.color == ?
// get follows prototype chain

Prototypes Are Dynamic Too

ring B The Ohio State University

Prototypes can add/remove properties

Changes are felt by all children
// dog is { name: "Rex", age: 3 }
// dog.mood & pet.mood are undefined
pet.mood = "happy"; // add to pet
// dog.mood is now "happy" too
pet.bark = function() {
return ${this.name} is ${this.mood} ;

}

dog.bark(); //=> "Rex is happy"
pet.bark(); //=> "undefined is happy"

Delegation to Prototype

dog

S |

Computer Science and Engineering B The Ohio State University

dog.bark () ;
pet.bark () ;

J
| 8 i B N B N B B 5§ B B B B B]

> "$S{this.name} is "
n ${this.mood} ;

Connecting Objects & Prototypes

Computer

How does an object get a prototype?
let ¢ = new Circle() ;

Answer
1. Every function has a prototype property
O Do not confuse with hidden [[Prototype]]!
2. Object's prototype /ink— [[Prototype]] —
is set to the function's prototype property
When a function Foo is used as a
constructor, /.e. new Foo (), the value
of Foo's prototype property is the
prototype object of the created object

Prototypes And Constructors

ing B The Ohio State University

Compu

darea

constructor

! [I

n this.centerX
ﬂ this.centerY
4 ... Bte ... 1

Prototypes And Constructors

Computer Sci d Engin ng B The Ohio State University

c = new Circle ()

darea

constructor

! [I

" prototype ‘ '
Circle | A ! |
n this.centerX

ﬂ this.centerY
4 ... Bte ... 1

Prototypes And Constructors

Computer Sci d Engin ng B The Ohio State University

C_= new Circle ()

| B =
\ drea

constructor

! [I

" prototype ‘ '
Circle | A ! |
n this.centerX

ﬂ this.centerY
4 ... Bte ... 1

@]

_______E_______,
(@)
()
>
—t
@
_<
|—L
NI

Prototypes And Constructors

Computer Science and Engineering B The Ohio State University

c = new Circle ()

darea

constructor

! AL

" prototype ‘ '
Circle | A ! |
n this.centerX

ﬂ this.centerY
4 ... Bte ... 1

Idiom: Put Methods |n Prototype

The Ohio

function Dog(n, a) {
this.name = n;
this.age = a;

this.bark = function(sound) {
return “~${this.name} says ${sound} ;

}
};

// bad: method is added to object itself

Method is in Object

Computer Science and Engineering B The Ohio State University

r = new Dog() Dog.prototype

R |
Q
Q
M
0)}

oo (A e A

this.name = x; T
! this.age = a; T
n this.bark = .. '

Idiom: Methods in Prototyp

Compute ring B The Ohio State University

function Dog(n, a) {
this.name = n;
this.age = a;

};

Dog.prototype.bark = function (sound) {
return “${this.name} says ${sound} ;

};

// good: add method to prototype

Idiom: Methods in Prototyp

Compute ring B The Ohio State University

class Dog {
constructor(n, a) {
this.name = n;
this.age = a;

}

bark (sound) {
return "${this.name} says ${sound} ;

}

// best: ES6 class syntax

Methods

In Prototype

r = new Dog() Dog.prototype
= T — =
| . |
I I
I e N
|
: name nReXn]=\‘ bark
: 1
: age 6 ! j constructor
|
: 1
| o o o o o e e e o e I

this.name
this.age = a; T

I
S

Computer Science

and Engineering B The Ohio State University

prototype T

dreturn "
v S{this.name}
" says ${sound}’;,

Class With Instance Fields

Computer Science and Engineering B The Ohio State University

class Dog {
name = "Fur"; // property of object
age;

constructor(n, a) {
this.name = n;
this.age = a;

}

bark (sound) {
return "${this.name} says ${sound} *;

}

Careful: Class Properties

Computer Science and Engineering B The Ohio State University

class Dog {
name: "Fur"; // property is in prototype!
age: 0;

constructor(n, a) {
this.name = n; // hides prototype property
this.age = a;

}

bark (sound) {
return "${this.name} says ${sound} ;

}

Class Properties

Computer Science and Engineering B The Ohio State University

Dog.prototype
r = new Dog () i }4””)7
r-m-mmmmo —
I Nname I m=z======z=z===jf====
| e : 1 [] ::
i name | "Rex Sge L I
| — ! g ! . prototype T
| 1 i
I age 6 I ! ! I
I —
: — : bark : L return "
= : I " ${this.name} .
: constructor i I says ${sound} ;|

Meaning of r instanceof Dog

Computer Science and Engineering B The Ohio State University

r = new Dog () Dog.prototype

[- e

I) I I /

: L l : : = Em Em Em Em o Em Em o Em o Em o =
4 A I ::

: name "ReX" i bark : [] 11

| 1 !

I < | : prototype T

! ! constructor I "

L L L ::

| — : ' - ||return i

e ——— Tl] |

this.name
this.age = a; T

I
"

v S{this.name}
' says ${sound} ;

== Dog

r. proto__

.constructor

Idiom: Classical Inheritance

Computer e Ohio State University

function Animal() { ... };
function Dog() { ... };

Dog.prototype = new Animal () ;
// create prototype for future dogs

Dog.prototype.constructor = Dog;
// set prototype's constructor
// properly (ie should point to Dog())

Setting up Prototype Chains

Computer Science and Engineering B The Ohio State University

new Animal() // Dog.prototype

Animal

Prototype Chains

Computer Science and Engineering B The Ohio State University

instanceOf is checked transitively up
the prototype chain

r instanceOf Dog //=> true

r instanceOf Animal //=> true

r instanceOf Object //=> true

Q: Identify in the previous diagram
r. proto . proto .constructor

Dog.prototype. proto
.constructor.prototype

To Ponder

Computer Science and Engineering B The Ohio State University

JavaScript Object Layout [Hursh Jain/mollypages.org]

Functions

Prototypes
(instances)
e __proto_ el
.. = new Foo() -~
J prototype
function
- FDD() constructor
- -
F/’F‘
[= new Object() proto_ ...
E: prototype
} function [* Object. B
" i rototype
| Object() - p yp
L constructor
51 L‘\ .'*.
I- roto
’ (Object created by —P P
Function) |
E: _-_pr‘oto__
(Foo' created . prototype .
by Function) function Function.
i rototype
/ Function() |q_ p yp
] 4 constructor i 4
T A proto_ e i
_proto__ .

Summary

Computer Science and Engineering B The Ohio State Universi

Objects as associative arrays

B Partial maps from keys to values

B Can dynamically add/remove properties
B Can iterate over properties

Method = function-valued property

B Keyword this for distinguished parameter

Any function can be a constructor
Prototypes are "parent” objects
B Delegation up the chain of prototypes

M Prototype is determined by constructor
B Prototypes can be modified

