JavaScript:
Objects, Methods, Prototypes

Lecture 25
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Property: a key/value pair

B aka name/value pair

Object: a partial map of properties
B Keys must be unique

Creating an object, literal notation

let myCar = { make: "Acura",
year: 1996,
plate: "NKR463" };

[0 access/modify an object's properties:
myCar .make = "Ford"; // cf. Ruby
myCar | "year"] = 2006;

let str = "ate";

myCar["pl" + str] == "NKR463"; //=> true




Object Properties
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Arrays vs Associative Arrays
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Dynamic Size, Just lee Arrays
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Objects can grow
myCar.state

"OH"; // 4 properties
let myBus = {};

myBus.driver = true; // adds a prop
myBus.windows = [2, 2, 2, 2];

Objects can shrink
delete myCar.plate;

// myCar is now { make: '"Ford",
// year: 2006, state: "OH" }
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Object Properties
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myCar.state = "OH";



Object Properties
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myCar delete myCar.plate;




Testing Presence of Key

Compu

Boolean operator: in
propertyName in object

Evaluates to true iff object has the
indicated property key

"make" in myCar //=> true

"speedometer" in myCar //=> false
"OH" in myCar //=> false

B Property names are strings



Iterating Over Properties

Iterate using for...in syntax

for (let property in object) {
..object|[property]..

}

Notice [] to access each property

for (let p in myCar) {
document.write( S{p}: S${myCar[pl} )

}

Loop over iterable (eg array) with for...of
for (let elt of roster) {
document.write ( name: ${elt} ) ;

}




Destructuring Assignm
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Objects can have many properties, and
many levels of nesting

const result = someGiantObject() ;

// only want 2 of result's properties
report (result.car) ;

combine (result.car, result.bus);

Alternative: destructuring assignment
let {car, bus} = someGiantObject() ;
report (car) ;

combine (car, bus);

let {car: ¢, bus: b} = someGiantObject();
combine (c, b);

B Eliminates unneeded result variable

B Simplifies access to properties of interest
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'he value of a property can be:
B A primitive (boolean, number, string, null...)
B A reference (object, array, function)
let temp = function (sound) {
play (sound) ;
return O;

}

myCar. = temp;
More succinctly:
myCar. = function(sound) {

play (sound) ;
return O;



Example: Method

let myCar = ({
make: "Acura'",
year: 1996,
plate: "NKR462",
honk: function (sound) {
play (sound) ;

return O;



Example: Method (with Sugar)

Com

let myCar = ({
make: "Acura',
year: 1996,
plate: "NKR462",
honk (sound) {
play (sound) ;

return O;



Object Properties
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Keyword “this” in Functions
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O Recall distinguished formal parameter
x.f£(y, z); //x is the distinguished argmt.

O Inside a function, keyword “this”
function () {
return this.plate + this.year;

}
O At run-time, “this” is the distinguished argument of
the invocation
myCar = { plate: "NKR462", year: 1996 };
yourCar = { plate: 340, year: 2013 };
myCar .register = ;
yourCar.info = ;
myCar.register () ; //=> "NKR4621996"
yourCar.info () ; //=> 2353

O Aside: arrow functions work differently
B Do not have their own this, use enclosing lexical scope



Object Properties
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Constructors
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Any function can be a constructor

When calling a function with “new”;
1. Make a brand new (empty) object

2. Call the function, with the new object as the
distinguished parameter

3. Implicitly return the new object to caller

A “constructor” often adds properties to the
new object simply by assigning them
function Dog(name) {
this.name = name; // adds 1 property
// no explicit return
}
let furBall = new Dog("Rex");

Naming convention: Functions intended to
be constructors are capitalized




Example

function Circle(x, y, radius) {
this.centerX = x;
this.centerY = y;
this.radius = radius;
this.area = function() {
return Math.PI * this.radius *

this.radius;

}
let ¢ = new Circle (10, 12, 2.45);
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Creating a Circle Object
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let ¢ = new Circle (10, 12, 2.45);

Circle

,this.centerX = x;
"this.centerY =V,



Creating a Circle Object
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Creating a Circle Object
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let ¢ = new Circle (10, 12, 2.45);
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Creating a Circle Object
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C@ let ¢ = new Circle (10, 12, 2.45);
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Creating a Circle Object
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let ¢ = new Circle (10, 12, 2.45);
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Creating Many Circle Objects
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for (let 1 = 0; i < 1000; i++) {
new Circle (0, 0, 1i);

}
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Prototypes

Every object has a prototype
B A hidden, indirect property ([[Prototype]])

What is a prototype?
B Just another object! Like any other!

When accessing a property (i.e. obj.p)
B First look for p in obj
B If not found, look for p in obj's prototype

B If not found, look for p in that object's
prototype!

B And so on, until reaching the basic system
object
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Class-Based Inheritance
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Prototype: Get vs Set of Proprty

Co

Consider two objects
let dog = { name: "Rex", age: 3 };

let pet = { color: "blue" };
Assume pet is dog's prototype




Delegation to Prototype
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Prototype: Get vs Set of Proprty

Co

Consider two objects
let dog = { name: "Rex", age: 3 };
let pet = { color: "blue" };

Assume pet iS dog's prototype

// dog.name == ?
// dog.color == ?
pet.color = "brown";

// dog.color is ?
dog.color = "green";
// dog.color is ?
// pet.color is ?



Delegation to Prototype
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dog

e e e e

dog.color == ?
// get follows prototype chain



Delegation to Prototype
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dog pet.color = "brown";

// set changes object

e e e e

dog.color == ?
// get follows prototype chain



Delegation to Prototype
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dog.color = '"green";
// set changes object!

dog.color == ?
// get follows prototype chain



Prototypes Are Dynamic Too
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Prototypes can add/remove properties

Changes are felt by all children
// dog is { name: "Rex", age: 3 }
// dog.mood & pet.mood are undefined
pet.mood = "happy"; // add to pet
// dog.mood is now "happy" too
pet.bark = function() {
return ${this.name} is ${this.mood} ;

}

dog.bark(); //=> "Rex is happy"
pet.bark(); //=> "undefined is happy"




Delegation to Prototype

dog
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dog.bark () ;
pet.bark () ;

J
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> "$S{this.name} is "
n  ${this.mood} ;



Connecting Objects & Prototypes

Computer

How does an object get a prototype?
let ¢ = new Circle() ;

Answer
1. Every function has a prototype property
O Do not confuse with hidden [[Prototype]]!
2. Object's prototype /ink— [ [Prototype] ] —
is set to the function's prototype property
When a function Foo is used as a
constructor, /.e. new Foo (), the value
of Foo's prototype property is the
prototype object of the created object




Prototypes And Constructors
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Prototypes And Constructors
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c = new Circle ()
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Prototypes And Constructors
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Prototypes And Constructors
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Idiom: Put Methods |n Prototype
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function Dog(n, a) {
this.name = n;
this.age = a;

this.bark = function(sound) {
return “~${this.name} says ${sound} ;

}
};

// bad: method is added to object itself



Method is in Object

Computer Science and Engineering B The Ohio State University
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R |
Q
Q
M
0)}

oo (A e A

this.name = x; T
! this.age = a; T
n this.bark = .. '




Idiom: Methods in Prototyp
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function Dog(n, a) {
this.name = n;
this.age = a;

};

Dog.prototype.bark = function (sound) {
return “${this.name} says ${sound} ;

};

// good: add method to prototype



Idiom: Methods in Prototyp
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class Dog {
constructor(n, a) {
this.name = n;
this.age = a;

}

bark (sound) {
return "${this.name} says ${sound} ;

}

// best: ES6 class syntax



Methods
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Class With Instance Fields
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class Dog {
name = "Fur"; // property of object
age;

constructor(n, a) {
this.name = n;
this.age = a;

}

bark (sound) {
return "${this.name} says ${sound} *;

}



Careful: Class Properties
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class Dog {
name: "Fur"; // property is in prototype!
age: 0;

constructor(n, a) {
this.name = n; // hides prototype property
this.age = a;

}

bark (sound) {
return "${this.name} says ${sound} ;

}



Class Properties
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Meaning of r instanceof Dog
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Idiom: Classical Inheritance
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function Animal() { ... };
function Dog() { ... };

Dog.prototype = new Animal () ;
// create prototype for future dogs

Dog.prototype.constructor = Dog;
// set prototype's constructor
// properly (ie should point to Dog())



Setting up Prototype Chains
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new Animal() // Dog.prototype

Animal



Prototype Chains
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instanceOf is checked transitively up
the prototype chain

r instanceOf Dog //=> true

r instanceOf Animal //=> true

r instanceOf Object //=> true

Q: Identify in the previous diagram
r. proto . proto .constructor

Dog.prototype. proto
.constructor.prototype



To Ponder
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JavaScript Object Layout [Hursh Jain/mollypages.org]
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Summary
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Objects as associative arrays

B Partial maps from keys to values

B Can dynamically add/remove properties
B Can iterate over properties

Method = function-valued property

B Keyword this for distinguished parameter

Any function can be a constructor
Prototypes are "parent” objects
B Delegation up the chain of prototypes

M Prototype is determined by constructor
B Prototypes can be modified




