
Computer Science and Engineering  College of Engineering  The Ohio State University

JavaScript:
Coercion and Functions

Lecture 23

Computer Science and Engineering  The Ohio State University

Conversion of Primitive Values

booleannumberstring

false"0"0numbers

false"0"-0

true"1"1

false"NaN"NaN

true"Infinity"Infinity

true"-Infinity"-Infinity

true"6.022e+24"6.022e23

Computer Science and Engineering  The Ohio State University

Conversion of Primitive Values

booleannumberstring

1"true"trueboolean

0"false"false

false0""strings

true0" "

true1.2"1.2"

true0"0"

trueNaN"one"

Computer Science and Engineering  The Ohio State University

Conversion of Primitive Values

booleannumberstring

falseNaN"undefined"undefinedundefined

false0"null"nullnull

Computer Science and Engineering  The Ohio State University

Summary of (Simple?) Rules

 How do numbers convert to things?
 Boolean: 0 is false, non-0 is true

(exception: NaN)
 How do strings convert to things?
 Numbers: non-valid syntax give NaN

(exception: empty/blank give 0)
 Boolean: true, only empty string is false

 How does undefined convert to things?
 Number: NaN

 How does null convert to things?
 Number: 0

Computer Science and Engineering  The Ohio State University

Easier? Column-Major View
 How do things convert to boolean?
 Empty string is false
 Numbers (+/-)0 and NaN are false
 undefined and null are false

 Aka “falsy” (vs. “truthy”)
 Importance: Boolean contexts

if (pet)… // evaluate pet as a boolean

 Pitfall: &&, || may not result in a boolean
 x || y means x ? x : y (first x converted)

p = "cat" || "dog" //=> p == "cat"
 Old idiom: !!x forces conversion to boolean

p = !!("cat" || "dog") //=> p == true

Computer Science and Engineering  The Ohio State University

Easier? Column-Major View

 How do things convert to Numbers?
 Empty (and whitespace) string is 0
 Non-numeric strings are NaN
 undefined is NaN
 null is 0

 Importance: Used in == evaluation

Computer Science and Engineering  The Ohio State University

== Evaluation is… Different
 When types do not match, coerce:
 null & undefined (only) equal each other
 Strings & booleans converted to numbers

"1.0" == true && "" == false
" " == false // but " " is truthy!

 Pitfall: NaN is not equal to NaN
 When one operand is an object:
 Convert via valueOf (fall back toString)
 Result then compared with usual == rules
 Note: no coercion when both operands are

references (== means reference equality)
 Sanity:
 Use === since it never coerces

Computer Science and Engineering  The Ohio State University

Your Turn

Evaluate: True or false?

true == '1'

'false' == false

0 == '0'

0 == ''

NaN == NaN

Computer Science and Engineering  The Ohio State University

Surprising Consequences
false == 'false' //=>
false == '0' //=>
!!'0' //=>
('0' == 0) && (0 == '') &&

('0' != '') //=>
(NaN == true) || (NaN == false)

//=>
!!NaN //=>
(NaN != 0) && (!!NaN == !!0)

//=>
 dorey.github.io/JavaScript-Equality-Table

Computer Science and Engineering  The Ohio State University

Functions are People too
 Named functions: declaration & use

function foo(a, b) { … }
foo("hi", 3);

 Anonymous functions
function(a, b) { … }
// how is such a thing invoked?

 Functions are objects (first-class citizens)
 They can be assigned to variables!

let foo = function(a, b) {…};
foo("hi", 3);
let bar = foo; // cf. let bar = foo();
bar("world", 17);

Computer Science and Engineering  The Ohio State University

Functions are Objects

10

12

2.45

centerX

centerY

radius

return Math.PI *
this.radius *
this.radius

area

this.centerX = x;
this.centerY = y;
... Etc ...

Circle

Computer Science and Engineering  The Ohio State University

Functions Can Be Arguments

function apply(f, a) {
return f(a); // f is a function!

}

function square(i) {
return i * i;

}

apply(square, 5) //=> 25

Computer Science and Engineering  The Ohio State University

Functions Can Be Return Values
function grantDegree() {
function addTitle(name) {
return `Dr. ${name}`;

}
return addTitle; // a function!

}

let phd = grantDegree();
phd("Turing"); // phd is a function
phd(3/2); //=> "Dr. 1.5"

Computer Science and Engineering  The Ohio State University

Closures
function greaterThan(bound) {
function compare(value) {
return value > bound;

}
return compare; // 1-arg function

}

let testPos = greaterThan(0);
testPos(4) //=> true
testPos(-3) //=> false

Computer Science and Engineering  The Ohio State University

Closures + Anonymity
function greaterThan(bound) {
function compare(value) {
return value > bound;

}
return compare; // 1-arg function

}

let testPos = greaterThan(0);
testPos(4) //=> true
testPos(-3) //=> false

Computer Science and Engineering  The Ohio State University

Closures + Anonymity
function greaterThan(bound) {
let compare = function(value) {
return value > bound;

}
return compare; // 1-arg function

}

let testPos = greaterThan(0);
testPos(4) //=> true
testPos(-3) //=> false

Computer Science and Engineering  The Ohio State University

Closures + Anonymity
function greaterThan(bound) {
return function(value) {
return value > bound;

}
}

let testPos = greaterThan(0);
testPos(4) //=> true
testPos(-3) //=> false

Computer Science and Engineering  The Ohio State University

Arrow Function Expressions
 Concise notation for anon. functions
 Syntax:
 Omit function keyword
 Place arrow => between params and body
 (a, b = 10) => { ... }
(r) => { return Math.PI * r**2 }

 For one-liner, can omit return and {} ’s
(r) => Math.PI * r**2

 For one parameter, can omit () ’s
r => Math.PI * r**2

 Use where function expressions needed
let area = r => Math.PI * r**2

Computer Science and Engineering  The Ohio State University

Closures + Anonymity Revisited
function greaterThan(bound) {
return value => value > bound;

}

let testPos = greaterThan(0);
testPos(4) //=> true
testPos(-3) //=> false

Computer Science and Engineering  The Ohio State University

Summary

 Truthy, falsey, and friends
 Type coercion is everywhere
 Coerce to boolean in conditionals
 Coerce to number for ==

 Functions as first-class citizens
 Can be passed as arguments
 Can be returned as return values!
 Closure: carry their context

Computer Science and Engineering  The Ohio State University

IIFE
 Immediately Invoked Function Expression
 Define and invoke function at the same time

 Basic forms:
 (function(){ /* code here */ })();
 let n = function(){ /* code here*/ }();

 Work-around for weird JavaScript scoping
 var scopes variables to the enclosing function
 IIFE creates a lexical scope (with closures)

 Modern JavaScript has let (and const)
 These scope variables to the enclosing block
 General advice: prefer let to var
 But IIFEs are still encountered in the wild

