
Computer Science and Engineering  College of Engineering  The Ohio State University

Static Site Generation

Lecture 21

Computer Science and Engineering  The Ohio State University

What is Static Site Generation?

 Use a program to produce HTML pages
 Analogous to compiling programs
 Translation: source code  machine code

 Development cycle:
 Write source
 Compile (aka build)
 Test/inspect result

 Examples of translators
 Jekyll (used for GitHub Pages, aka github.io)
 Middleman
 Lots more, see: staticsitegenerators.net

Computer Science and Engineering  The Ohio State University

Picture

.html

.
.css

.md

.scss

.erb

generated
web site

source
files

build

Computer Science and Engineering  The Ohio State University

Middleman: A Ruby Gem
 Project is a directory (eg myproj)

$ middleman init myproj
 Configuration files, README, Gemfile, etc

 Create source files in myproj/source
 Subdirectories for CSS, images, etc

 Compile all the source files
$ bundle exec middleman build

 Result is placed in myproj/build
 Deploy: copy/rsync/ftp contents to server

$ rsync -avz --del myproj/build ~/WWW

 Preview locally (no build needed)
$ bundle exec middleman server

Computer Science and Engineering  The Ohio State University

Advice: Middleman 4.5
 Problem: scss isn't processed

TypeError: Cannot read properties of
undefined (reading 'version')

 Solution: Bump autoprefixer to 3.0
Gemfile
gem 'middleman-autoprefixer', '~> 3.0'

 Helpful: live reload
 See site changes as source is edited
Gemfile
gem 'middleman-livereload'
config.rb
activate :livereload

Computer Science and Engineering  The Ohio State University

Deployment: Netlify

 Hosts and builds web sites
 Create a "site", connect to a GitHub repo
 Every push to repo's main results in a

build, followed by publishing the result
 Free for sites in "OSU CSE 3901" team

Computer Science and Engineering  The Ohio State University

Deployment: GitHub
 GitHub Pages: serves repo as web site
 URL https://org.github.io/repo/
 Settings > Pages > Build > Source
 Branch (gh-pages), subdirectory
 Alternative: GitHub Action

 GitHub Action
 Responds to an event (eg push on main)
 Runs the build process
 Deploys the result

 Use relative links (notice path in URL)
config.rb
activate :relative_assets
set :relative_links, true

 Helpful: add URL to repo's About

Computer Science and Engineering  The Ohio State University

Why Bother?

1. Code reuse and single-point-of-control
over change

2. Authoring of content in a language
that is more human-friendly

3. Parameterized generation of markup
and content

Let's look at each of these benefits in
turn…

Computer Science and Engineering  The Ohio State University

Motivation #1: Visual Identity

Computer Science and Engineering  The Ohio State University

Motivation #1: Visual Identity

 Common headers & footers
 Example: OSU web sites share nav bar
 Example: course web site

 Duplication of code is evil
 Corollary: cut-and-paste is evil
 Destroys single-point-of-control over

change
 Solution:
 Put common HTML in one file (a partial)
 Every document includes that file

Computer Science and Engineering  The Ohio State University

ERb: Embedded Ruby
 General templating mechanism

 “Template” = a string (usually contents of some file)
 Contains (escaped) bits of ruby

 <% code %> execute ruby code (“scriplet”)
 <%= expr %> replace with result of ruby expr
 <%# text %> ignore (a comment)

 Example: a text file
This is some text.
<% 5.times do %>
Current Time is <%= Time.now %>!
<% end %>

 Process using erb tool to generate result
$ erb example.txt.erb > example.txt

 Naming convention: filename.outputlang.erb
 Example index.html.erb

 Many alternatives, eg HAML

Computer Science and Engineering  The Ohio State University

Generation of Site

 Source files in myproj/source
$ ls source
index.html.erb syll.html.erb
meet.html.erb

 Compile
$ bundle exec middleman build

 Result after building
$ ls build
index.html meet.html syll.html

Computer Science and Engineering  The Ohio State University

Partials
 A document fragment included in other

documents
 Include in template with partial function

<body>
<%= partial "navigation" %>
…
<%= partial "footer" %>

</body>
 Partial's filename begins with '_'
 ie _navigation.erb
<div class="navbar">

<ul id="site-nav"> …
</div>
 Note: '_' omitted in argument to function

Computer Science and Engineering  The Ohio State University

Generation of Site with Partials

 Source files in myproj/source
$ ls source
_footer.erb meet.html.erb
_navigation.erb syll.html.erb
index.html.erb

 Compile
$ bundle exec middleman build

 Result after building
$ ls build
index.html meet.html syll.html

Computer Science and Engineering  The Ohio State University

Site Generation With Partials

A

B

C

A

B

C

index.html

syll.html

meet.html

index.html.erb

meet.html.erb

syll.html.erb

_navigation.erb

_footer.erb

Computer Science and Engineering  The Ohio State University

Tricks with Partials

 Content of partial can be customized
with arguments in call

 In call: pass a hash called :locals
<%= partial "banner",

locals: { name: "Syllabus",
amount: 34 } %>

 In partial: access hash with variables
<h3> <%= name %> </h3>
<p> Costs <%= "$#{amount}.00" %></p>

Computer Science and Engineering  The Ohio State University

Problem
 How to guarantee every page includes partial(s)

 Partials don't ensure one page structure across the site
 Every page should look like:

<!DOCTYPE html>
<html>
<head>
<meta charset="utf-8">
<title>Class Meetings</title>
<link rel="stylesheet" type="text/css"
href="osu_style.css">

</head>
<body>
<%= partial "navigation" %>
… <!-- different for each page -->
<%= partial "footer" %>

</body>
</html>

Computer Science and Engineering  The Ohio State University

Solution: Layouts
 HTML formed from: Layout + Template

 Layout is the common structure of HTML pages
 Layout uses yield to include (page-specific) template

 File: layout.erb
<!DOCTYPE html>
<html>
<head>
<meta charset="utf-8">
<title> … etc

</head>
<body>
<%= partial "navigation" %>
<%= yield %>
<%= partial "footer" %>

</body>
<html>

 Layout is where you put site-wide styling
 e.g., navigation bar, div's with CSS classes, footers

Computer Science and Engineering  The Ohio State University

Site Generation With Layouts

A

B

C

index.html

syll.html

meet.html

index.html.erb

meet.html.erb

syll.html.erb

_navigation.erb

_footer.erb

layout.erb

A

B

C

Computer Science and Engineering  The Ohio State University

Generation of Site with Layouts

 Default layout in
source/layouts/layout.erb
$ ls –F source
index.html.erb meet.html.erb
layouts/ syll.html.erb
$ ls source/layouts
_footer.erb _navigation.erb layout.erb

 Result after building
$ ls build
index.html meet.html syll.html

Computer Science and Engineering  The Ohio State University

Page-Specific Data in Layout
 Some layout content is page-specific
 Example: <title> in document's head

 Solution: Ruby variable current_page
 Example: current_page.path

 Template contains “frontmatter” that sets
the value of current_page.data
 In template (meet.html.erb)

title: "Class Meetings"

 In layout (layout.erb)
<title> <%= current_page.data.title %>
</title>

Computer Science and Engineering  The Ohio State University

Example: Navbar Highlights

Computer Science and Engineering  The Ohio State University

Why Bother?

1. Code reuse and single-point-of-control
over change

2. Authoring of content in a language
that is more human-friendly

3. Parameterized generation of markup
and content

Let's look at each of these benefits in
turn…

Computer Science and Engineering  The Ohio State University

Motivation #2: Improved Syntax

 HTML tags make content hard to read
 <p>, <h2>, , etc
 vs plain text, which is easier to read

 Common plain text conventions:
 Blank lines between paragraphs
 Underline titles with –'s or ='s
 Emphasize *words*, _words_, **words**
 Links as [text](url)
 Unordered lists with bullets using * or -
 Numbered lists with 1., 2., 3.

<h2>Why Middleman?</h2>

<p>The last few years have seen an explosion in the amount and
variety of tools developers can use to build web applications.
Ruby on Rails selects a handful of these tools:</p>

Sass for DRY
stylesheets
CoffeeScript for safer
and less verbose javascript
Multiple asset management solutions, including Sprockets
<a href="http://ruby-doc.org/stdlib-
2.0.0/libdoc/erb/rdoc/ERB.html">ERb & Haml for dynamic pages and
simplified HTML syntax

<p>Middleman gives the stand-alone developer…

Why Middleman?

The last few years have seen an explosion in the amount and
variety of tools developers can use to build web applications.
Ruby on Rails selects a handful of these tools:

* [Sass](http://sass-lang.com/) for DRY stylesheets
* [CoffeeScript](http://coffeescript.org/) for safer and less
verbose javascript
* Multiple asset management solutions, including
[Sprockets](https://github.com/sstephenson/sprockets)
* [ERb](http://ruby-doc.org/stdlib-
2.0.0/libdoc/erb/rdoc/ERB.html) & [Haml](http://haml.info/) for
dynamic pages and simplified HTML syntax

Middleman gives the stand-alone developer…

Computer Science and Engineering  The Ohio State University

Markdown
 Formalizes these ASCII conventions
 Filename extension: .md
 Adds some less familiar ones (eg `)

 Translator generates HTML from markdown
 Examples: GitHub readme's, user-posted

comments on web boards (StackOverflow)
 Other target languages possible too

 See Middleman's README.md
 Regular view
 Raw view

 Warning: many Markdown dialects/engines
 daringfireball.net (original, 2004, stale)
 Common Mark, GitHub-flavored markdown (GFM),

Markdown Extra
 kramdown, rdiscount, redcarpet, …

Computer Science and Engineering  The Ohio State University

CSS: Magic Numbers

 Literals are common in CSS
h1 { background-color: #ff14a6; }
h2 { color: #ff14a6; }

 Result: Lack of single-point-of-control
 Solution: SASS allows variables

$primary: #ff14a6;
h1 { background-color: $primary; }
h2 { color: $primary; }

 Translator generates CSS from SASS
 Note: CSS has something similar

(custom properties)

Computer Science and Engineering  The Ohio State University

CSS: Repeated Ancestors

 CSS requires separate rules for
different elements with same ancestor
.navbar ul { … }
.navbar li { … }

 Changing classname requires changing
all these rules

 Solution: SASS allows nested selectors
.navbar {
ul { … }
li { … }

}

Computer Science and Engineering  The Ohio State University

Why Bother?

1. Code reuse and single-point-of-control
over change

2. Authoring of content in a language
that is more human-friendly

3. Parameterized generation of markup
and content

Let's look at each of these benefits in
turn…

Computer Science and Engineering  The Ohio State University

Motiv'n #3: Content Generation
 Problem: Parameterized/repeated content
 Example: Course offering term

 Solution: Read content from data
 Files in subdirectory data/ define variables

data/dates.yml
term: "Autumn 2023"

 Variables then available in templates
<%= data.dates.term %>

 Problem: Repeated structure
 Example: Each row in table

 Solution: Generate structure with code
 Iterate over array, creating table rows
 See course web site
<% meetings.each do |meet| %>

<tr> <td> <%= meet.date %> </td>…

Computer Science and Engineering  The Ohio State University

Generating Random Content
 Want placeholder content for prototype
 Useful for making style/layout decisions
 Don't care about actual content

 Solution: use a method that returns an
HTML string
<%= lorem.sentence %>

 Many lorem methods available
lorem.paragraphs 2
lorem.date
lorem.last_name
lorem.image('300x400')
#=> http://placehold.it/300x400

Computer Science and Engineering  The Ohio State University

Helper Functions

 Used to generate common HTML snippets
 Example: hyperlinks

About us

 With link_to helper in template:
<%= link_to('About us', '/about.html') %>
#=> About us

 Many optional arguments
<%= link_to('My Blog', '/blog.html',

class: 'happy') %>
#=>

My Blog

Computer Science and Engineering  The Ohio State University

(Many) More Helper Functions
 Format helpers

pluralize 2, 'person' #=> "2 people"
 Tag helpers

tag :img, src: '/kittens/png'
content_tag :p, class: 'warning' do … end

 Form helpers
form_tag '/login', method: 'post'
button_tag 'cancel', class: 'clear'

 Asset helpers
stylesheet_link_tag 'all'
javascript_include_tag 'jquery'
favicon_tag 'images/favicon.png'
image_tag 'padrino.png',

width: '35', class: 'logo'

Computer Science and Engineering  The Ohio State University

Summary

 ERb
 Template for generating HTML
 Scriplets and expressions

 Reuse of views with partials
 Included with partial (eg <%= partial…)
 Filename is prepended with underscore
 Parameter passing from parent template

 Layouts and templates
 Markdown, SASS
 Content generation and helpers

