
Computer Science and Engineering  College of Engineering  The Ohio State University

Working with Web APIs

Lecture 13

Computer Science and Engineering  The Ohio State University

Passing arguments: GET

 Arguments are key-value pairs
Mascot: Brutus Buckeye
Dept: CS&E

 Can be encoded as part of URL
scheme://FQDN:port/path?query#fragment

 application/x-www-form-urlencoded
 Each key-value pair separated by & (or ;)
 Each key separated from value by =
 Replace spaces with + (arcane!)
 Then normal URL encoding
Mascot=Brutus+Buckeye&Dept=CS%26E

Computer Science and Engineering  The Ohio State University

Examples
 Wikipedia search

http://en.wikipedia.org/
w/index.php?
search=ada+lovelace

 OSU news articles
https://news.osu.edu/

?
q=Goldwater&search.x=1&search.y=0

 Random passwords from random.org
https://random.org/

passwords/?
num=5&len=8&format=plain

 Demo: use Chrome dev tools to "Copy as cURL"
 See guidelines and API for http clients

Computer Science and Engineering  The Ohio State University

Passing Arguments: POST
 Encoded as part of the request body
 Advantages:
 Arbitrary length (URLs are limited)
 Arguments not saved in browser history
 Result not cached by browser
 Slightly more secure (not really)

 Args are less likely to be accidentally shared,
because they aren't obvious in the location bar

 Content-Type indicates encoding
 application/x-www-form-urlencoded

 Same encoding as used with GET
 multipart/form-data

 Better for binary data (else 1 byte3 bytes)
 More options too:

 application/xml, application/json, …

Computer Science and Engineering  The Ohio State University

Passing Args: GET vs POST
 GET

GET /passwords/?num=5&len=8&format=plain
HTTP/1.1
Host: www.random.org

 POST
POST /passwords/ HTTP/1.1
Host: www.random.org
Content-Type: application/x-www-form-
urlencoded
Content-Length: 24

num=5&len=8&format=plain

Computer Science and Engineering  The Ohio State University

Passing Args: Summary

 Arguments in GET requests
 Request query string
 Limited length, highly visible
 application/x-www-form-urlencoded

 Arguments in POST requests
 Request body
 No size limit, not bookmarked
 Choices for how to encode, most common:
 application/x-www-form-urlencoded
 multipart/form-data
 application/json

Computer Science and Engineering  The Ohio State University

JSON

 JavaScript Object Notation
 String-based representation of a value
 Serialization: converting value -> string
 Deserialization: converting string -> value

 Easy enough for people to read
 Really designed for computers to parse
 The lingua franca for transfer of (object)

values via HTTP
 Used both ways: requests and responses

 MIME type: application/json

Computer Science and Engineering  The Ohio State University

JSON Types
 Text: a string, "…"

"hello", "I said \"hi\"", "3.4", ""

 Number: integer or floating point
6, -3.14, 6.022e23

 Boolean
true, false

 Null
null

 Array: ordered list of values, […]
 [3, 2, 1, "go"]

 Object: set of name/value pairs, {…}
{"mascot": "Brutus", "age": 19, "nut": true}

Computer Science and Engineering  The Ohio State University

Example

{"current_page":1,"limit":20,"next_
page":1,"previous_page":1,"results"
:[{"id":"GlGBIY0wAAd","joke":"How
much does a hipster weigh? An
instagram."},{"id":"xc21Lmbxcib","j
oke":"How did the hipster burn the
roof of his mouth? He ate the pizza
before it was
cool."}],"search_term":"hipster","s
tatus":200,"total_jokes":2,"total_p
ages":1}

Computer Science and Engineering  The Ohio State University

Example: Same Value
{
"current_page": 1,
"limit": 20,
"next_page": 1,
"previous_page": 1,
"results": [
{
"id": "GlGBIY0wAAd",
"joke": "How much does a hipster weigh? An instagram."

},
{
"id": "xc21Lmbxcib",
"joke": "How did the hipster burn the roof of his mouth? He ate the

pizza before it was cool."
}

],
"search_term": "hipster",
"status": 200,
"total_jokes": 2,
"total_pages": 1

}

Computer Science and Engineering  The Ohio State University

Syntax

 Very similar to hash literal in Ruby
 Inspired by object literal in JavaScript
{"dept": "CSE", "class": 3901}
 Spaces and newlines don't matter

 But not identical!
 Important differences
 Keys are strings (not symbols)
 "dept": not dept:

 Strings are double quoted (not single)
 "CSE" not 'CSE'

 No comments

Computer Science and Engineering  The Ohio State University

Example
{
"current_page": 1,
"limit": 20,
"next_page": 1,
"previous_page": 1,
"results": [
{
"id": "GlGBIY0wAAd",
"joke": "How much does a hipster weigh? An instagram."

},
{
"id": "xc21Lmbxcib",
"joke": "How did the hipster burn the roof of his mouth? He ate the

pizza before it was cool."
}

],
"search_term": "hipster",
"status": 200,
"total_jokes": 2,
"total_pages": 1

}

x['results'][1]['id'] #=> 'xc21Lmbxcib'

Computer Science and Engineering  The Ohio State University

(De)serialization in Ruby

 Get JSON from an object
JSON.generate ([0x10, true, :age, 'hi'])
#=> "[16,true,\"age\",\"hi\"]"

 Get an object from JSON
s = "{\"zips\": [43210, 43211]}"
JSON.parse(s)
#=> {'zips' => [43210, 43211]}
JSON.parse(s, {symbolize_names: true})
#=> {:zips => [43210, 43211]}

Computer Science and Engineering  The Ohio State University

Alternatives

 JSON is readable
 Sometimes used for configuration files
 VSCode: .vscode/settings.json
 .markdownlint.json, devcontainer.json,…

 But JSON isn't human-friendly
 No comments
 Visual clutter with lots of " marks

 Alternatives, when readability matters
 YAML: yet another markup language
 JSONC: adds comment, not universal

Computer Science and Engineering  The Ohio State University

Web APIs

 API contains endpoints, each of which:
 verb (GET or POST) and URL path
 Accepted arguments
 Returned value (typically JSON)

 Roughly equivalent to a method signature
 Many ways to call an endpoint
 Command line: curl
 Tool: VSCode extension rest-client, Postman
 HTTP client library: (Faraday, Net::HTTP)
 Client library provided by the service itself

(octokit for GitHub, stripe-ruby for Stripe)

Computer Science and Engineering  The Ohio State University

Example APIs
 Dad Jokes

 https://icanhazdadjoke.com/api

 Canvas (ie Carmen)
 https://canvas.instructure.com/doc/api/

 US National Weather Service
 https://www.weather.gov/documentation/services-web-

api

 US Census Bureau
 https://www.census.gov/data/developers/data-sets.html

 GitHub
 https://docs.github.com/en/rest

 And many, many more…
 https://github.com/public-apis/public-apis

Computer Science and Engineering  The Ohio State University

API Key

 Service may require a key to use
 Register with service, get a secret token

(ie a long random number or string)
 Include this token in every HTTP request,

eg using the Authorization header
Authorization: Bearer canvas_12341234aaaaffff

 Golden rule: never share or commit
your secret token!
 Treat it like a password
 Dilemma: Your code needs to use it, so it

needs to be stored somewhere…

Computer Science and Engineering  The Ohio State University

Solution Strategy: Env Variable
 Create .env file for secrets

.env
CANVAS_TOKEN=YOURSECRETVALUE

 Keep .env out of commits!
.gitignore
.env

 Create sample with dummy value
.env.template
CANVAS_TOKEN=CANVAS_TOKEN_SECRET

 Use environment variable in client code
require 'dotenv'
Dotenv.load # looks for .env file
auth = "Bearer #{ENV['CANVAS_TOKEN']"
req.header['Authorization'] = auth

Computer Science and Engineering  The Ohio State University

Getting an API Key

 GitHub
 Login, Settings > Developer Settings
 Personal access tokens > Tokens

 Canvas
 Login, Account > Settings
 Under "Approved Integrations",

"+ New Access Token"

 Use meaningful name for token
 Value typically shown just one time

Computer Science and Engineering  The Ohio State University

Summary
 Passing arguments
 GET: query string (url-encoded)
 POST: body (several different encodings)

 JSON
 Syntax for describing values
 Just a few basic types (object, array, text,

number…)
 Useful for (de)serialization, while also human-

readable
 API endpoints
 Response body is often JSON

 API keys
 Protect secrets, eg with private .env file
 Use in request header to legitimize source

