
Computer Science and Engineering  College of Engineering  The Ohio State University

HTTP:
Hypertext Transfer Protocol

Lecture 12

Computer Science and Engineering  The Ohio State University

HTTP
 Hypertext Transfer Protocol
 History
 Early 90's: developed at CERN, Tim Berners-Lee
 1996: version 1.0
 1999: version 1.1 (ubiquitous today!)
 2015: version 2

 Performance improvements: binary, server push…
 Backwards compatible

 2022: version 3
 Performance improvements, same semantics
w3techs.com/technologies/overview/site_element

 Simple request/response (client/server)
 Client sends request to (web) server
 (Web) server responds
 Protocol itself is stateless

Computer Science and Engineering  The Ohio State University

Anatomy of a Request/Response

 An HTTP request/response consists of
1. Method (request) / status (response)
2. Header fields: meta information
3. A blank line
4. Body (sometimes): payload

 The header (parts 1-3) is ASCII text
 Newline is CRLF (typical of IETF protocols)
 Method/status is 1 line
 Each header field is on its own line
 Blank line separates header from body

Computer Science and Engineering  The Ohio State University

Protocol: Request, Response

Request

Response

Method
Header field 1
Header field 2

Body

Status
Header field 1
Header field 2
Header field 3

Body

Computer Science and Engineering  The Ohio State University

Request Header: Method

 Syntax of first line:
verb path version
 Verb: GET, HEAD, POST, PUT, DELETE,…
 Path: part of URL (path and query)

scheme://FQDN:port/path?query#fragment

 Version: HTTP/1.1, HTTP/2, HTTP/3

 Example:
 For URL

http://www.osu.edu/academics#content

 First line of HTTP request is
GET /academics HTTP/1.1

Computer Science and Engineering  The Ohio State University

Request Header: Header Fields
 Each field is on its own line:

name: value

 Examples
Host: cse.ohio-state.edu
Accept: text/*,image/apng
Accept-Language: en-US,en;q=0.9
If-Modified-Since: Sat, 12 May 2021
19:43:31 GMT
Content-Length: 349
User-Agent: Mozilla/5.0 (X11; Linux
x86_64) Chrome116.0.0.0 Safari/537.36

 Header names are case insensitive

Computer Science and Engineering  The Ohio State University

Some Common Header Fields
 Host

 The only required field
 Q: Why is host field even needed?

 Accept, Accept-Language, Accept-Encoding
 List of browser preferences for response
 MIME types, language locales, transfer encodings
 Priority based on order and q-value weight (0-1)

 User-Agent
 Identifies application making request

 If-Modified-Since
 Send payload only if changed since date
 Date must be GMT

 Content-Length
 Required if request has a body
 Number of bytes in body

 Referer (misspelled in spec)
 Previous web page, ie source of this request

Computer Science and Engineering  The Ohio State University

"Nobody knows you're a dog"

Request

GET / HTTP/1.1
Host: www.osu.edu
User-Agent: Mozilla/5.0 (X11; Ubuntu;…etc

Computer Science and Engineering  The Ohio State University

"Nobody knows you're a dog"

Request

GET / HTTP/1.1
Host: www.osu.edu
User-Agent: Mozilla/5.0 (X11; Ubuntu;…etc

$ curl -A "Mozilla/5.0" http://www.osu.edu

$ telnet

require 'mechanize'
agent = Mechanize.new
page = agent.get 'http://www.osu.edu'

Computer Science and Engineering  The Ohio State University

Demo: HTTP Request with telnet

 Example URL
 web.cse.ohio-state.edu/~sivilotti.1/

 At console
$ telnet web.cse.ohio-state.edu 80

 Opens connection to port 80, where a web
server is listening

 Send the following HTTP request:
GET /~sivilotti.1/ HTTP/1.1
Host: web.cse.ohio-state.edu
<blank line>

Computer Science and Engineering  The Ohio State University

HTTP Traffic Transparency
 Everything is visible to an eavesdropper
 HTTP headers are plain text
 HTTP payload may be binary

 To protect communication, use encryption
 SSL, TLS: protocols to create secure channel
 Initial handshake between client and server
 Subsequent communication is encrypted

 HTTP over secure channel = HTTPS
 Default port: 443

Request

MFKM5DO388HSshF1GfEr
x5PXsJk0hGVtiK8xoNf4

Computer Science and Engineering  The Ohio State University

Demo: HTTPS with openssl
 Use openssl instead of telnet
 Negotiates initial handshake with server
 Handles encryption/decryption of traffic

 Example URL
 https://www.osu.edu/

 At console
$ openssl s_client -connect www.osu.edu:443
 Note connection to port 443 (ie https)

 Syntax of subsequent request is the same
 Send the following HTTP request:

GET / HTTP/1.1
Host: www.osu.edu
<blank line>

Computer Science and Engineering  The Ohio State University

HTTP Response Anatomy
 Recall, four parts

1. Status (one line)
2. Header fields (separated by newlines)
3. Blank line
4. Body (i.e., payload)

 Parts 1-2 collectively are the header
 Status line syntax:

http-version status-code text
 Examples
HTTP/1.1 200 OK
HTTP/1.1 301 Moved Permanently
HTTP/1.1 404 Not Found

Computer Science and Engineering  The Ohio State University

Taxonomy of Status Codes
MeaningCode
Informational1xx
Success2xx
Redirection3xx
Client Error4xx
Server Error5xx

Computer Science and Engineering  The Ohio State University

Some Common Status Codes
 200 Success/OK

 All is good!
 Response body is the requested document

 301 Permanent Redirect / 302 Temporary Redirect
 Requested resource is found somewhere else
 301 means please go to new location in the future

 304 Not Modified
 Document hasn’t changed since date/time in If-

Modified-Since field of request
 No response body

 404 Not Found
 Server could not satisfy the request
 It is the client’s fault (design-by-contract?)

 500 Internal Server Error
 Server could not satisfy the request
 It is the server’s fault (design-by-contract?)

Computer Science and Engineering  The Ohio State University

Response Header: Header Fields

 Each field on its own line, syntax:
name: value

 Examples
Date: Tue, 19 Sep 2023 17:31:18 GMT
Server: Apache/2.4.6 (Red Hat)
Content-Type: text/html; charset=UTF-8
Content-Encoding: gzip
Content-Length: 333

 Blank line indicates end of headers

Computer Science and Engineering  The Ohio State University

Demo: Using Terminal
 Telnet is cumbersome
 Requesting the following by telnet fails (why?)
http://web.cse.ohio-state.edu/~paolo/
 Try:
http://web.cse.ohio-state.edu/~sivilotti.1/
 Body is incomplete (no images)
 Body is chunked

 Better command-line tool: cURL
 Handles redirection, chunking, https, headers, …
$ curl –Li web.cse.ohio-state.edu/~paolo
 Can explicitly set request headers (-H)
$ curl https://www.osu.edu \

-A "Mozilla/5.0"
-H "accept: text/html"

Computer Science and Engineering  The Ohio State University

Demo: Chrome Developer Tools

 Powerful inspection tool for the web
 Kabob > More Tools… > Developer Tools,

then see the Network tab
 One GET results in many requests

http://web.cse.ohio-state.edu/~paolo

 For each request, see:
 Request method, headers
 Response status code, and headers
 Response body (and preview)

 To reproduce a request:
 Right click, Copy > Copy as cURL

Computer Science and Engineering  The Ohio State University

Demo: Using Ruby
 Mechanize: A Ruby gem for HTTP

require 'mechanize'
 Create an agent to send requests

agent = Mechanize.new do |a|
a.user_agent_alias = 'Mac Safari'

end
 Use agent to issue a request

page = agent.get 'https://news.osu.edu'
 Follow links, submit forms, etc

h = page.link_with(text: /Top/).click
f = page.forms[0]
f.field_with(name: 'q').value = 'CSE'
s = f.submit

Computer Science and Engineering  The Ohio State University

Request Methods

 GET, HEAD
 Request: should be safe (no side effects)
 Request has header only (no body)

 PUT
 Update (or create): should be idempotent

 DELETE
 Delete: should be idempotent

 POST
 Create (or update): changes server state
 Beware re-sending!

 HTTP does not enforce these semantics

Computer Science and Engineering  The Ohio State University

HTTP is Stateless
 Every request looks the same
 But maintaining state between requests is

really useful:
 User logs in, then can GET account info
 Shopping cart “remembers” contents

 Solution: Keep a shared secret
 Server's first response contains a unique

session identifier (a long random value)
 Subsequent requests from this client include

this secret value
 Server recognizes the secret value, request

must have come from original client

Computer Science and Engineering  The Ohio State University

HTTP Session

Request

Computer Science and Engineering  The Ohio State University

HTTP Session

Request

38afes7a8

Store secret

Computer Science and Engineering  The Ohio State University

HTTP Session

Request

Response
Secret: 38afes7a8

38afes7a8

Store secret

Computer Science and Engineering  The Ohio State University

HTTP Session

Request

Response
Secret: 38afes7a8

Request
id: 38afes7a8

Response

38afes7a8

Store secret

Check id

Request
id: 38afes7a8

Response

Check id

Computer Science and Engineering  The Ohio State University

HTTP Cookies
 Popular mechanism for session manag’nt
 Set in response header field

Set-Cookie: session=38afes7a8
 Any name/value is ok
 Options: expiry, require https

 Client then includes cookie(s) in any
subsequent request to that domain

 Sent in request header field:
Cookie: session=38afes7a8

 Cookies also used for
 Tracking/analytics: What path did they take?
 Personalization

Computer Science and Engineering  The Ohio State University

Summary

 HTTP: request/response
 Anatomy of request
 Methods: GET, PUT, DELETE, POST
 Headers
 Body: arguments of POST

 Anatomy of response
 Status Codes: 200, 301, 404, etc
 Headers
 Body: payload

 Tools
 Curl, Developer Tools, Mechanize

