
Computer Science and Engineering  College of Engineering  The Ohio State University

Networking Basics:
IP, DNS, URL, MIME

Lecture 11

Computer Science and Engineering  The Ohio State University

Internet Protocol (IP) Addresses

 A unique 32-bit number
 Assigned to device connected to internet
 An address for delivery of packets

 Written in dotted-decimal notation
 Divided into 4 fields separated by “.”
 Each field is 8 bits, ie 0-255 decimal

10100100011010110111101100000110
10100100.01101011.01111011.00000110
164.107.123.6

 Some are reserved: eg, 127.0.0.1

Computer Science and Engineering  The Ohio State University

Abstract Value vs Encoding

 Abstraction: 32-bit integer value
 Encodings
 Dotted decimal
 Dotted hex
 Dotted octal
 Hexadecimal
 Decimal
 Binary
 Etc…

 Recall: abstraction, representation,
correspondence relation

Computer Science and Engineering  The Ohio State University

Address Space

 Organizations are allocated blocks of
contiguous address to use

 32 bits means 4 billion addresses
 Population of the earth: 7 billion
 Not enough addresses to go around!

 The end is predictable
 Techniques like NAT developed to help

 In fact, the end has come!
 Feb 2011: Last block was allocated

Computer Science and Engineering  The Ohio State University

IPv6
 128 bits
 ~1040 addresses; we’re good for a while
 A growing fraction of IP traffic

GoogleIPv6 statistics
 Recommended format (canonical):
 Divide into 8 fields separated by “:”
 Each field is 4 hex digits (0-FFFF), ie 16 bits
 Omit leading 0’s in a field
 If there are consecutive fields with value 0,

compress them as “::”
 Compress at most one such set of 0’s

 Otherwise encoding could be ambiguous
 Compress the longest sequence

Computer Science and Engineering  The Ohio State University

Canonical Format: Uniqueness

2001:0db8:0000:0000:0000:ff00:0042:8329
2001:0db8:0000:0000:0000:ff00:0042:8329

2001:db8:0:0:0:ff00:42:8329
2001:db8:0:0:0:ff00:42:8329

2001:db8::ff00:42:8329

Computer Science and Engineering  The Ohio State University

Domain Names

 String corresponds to an IP address
 web.cse.ohio-state.edu is easier than

164.107.123.6

 Case insensitive: Lower-case standard
 A partial map (almost)
 DNS maps lower-case strings  IP

addresses
 Multiple strings can map to same address!
 Some strings map to multiple addresses

(unusual)!

Computer Science and Engineering  The Ohio State University

Domain Name Hierarchy

 Separated by .’s
 Don’t confuse with dotted decimal!

 Right-to-left hierarchy
 Top-level domain is right-most field
 edu, com, net, gov, countries (ca, it, …)

 Second-level domain to its left
 Then third, fourth, etc, no limit

www.sos.state.oh.us

 Hostname + Domain Name =
Fully Qualified Domain Name (FQDN)
stdlinux.cse.ohio-state.edu

Computer Science and Engineering  The Ohio State University

Computer Science and Engineering  The Ohio State University

Name Servers
 Act as a phonebook for lookup
 Client view:
 Given a FQDN, return IP address
 Partial map: FQDNs  IP addresses
 See host, whois

 Implementation view:
 Hierarchical by domain
 Local caching for recently retrieved items

 Command line tools
$ host web.cse.ohio-state.edu
web.cse.ohio-state.edu has address

164.107.129.176
$ whois osu.com

Computer Science and Engineering  The Ohio State University

Protocols

 Systematic ordering of messages
 Phone rings
 Callee answers by saying “Hello”
 Caller answers by saying “Hello”

 Different protocols use different
messages, different sequencing, etc
 In Italy, callee answers by saying “Pronto”

Computer Science and Engineering  The Ohio State University

Network Layering: Abstraction

 One protocol is built on top of another
 Application level: FTP, HTTP, SSH, SMTP,

TELNET
 Transport: TPC, UDP
 Internet: IP

 Each protocol assumes certain
behavior from layer below
 IP routes packets to destination

(unreliable)
 TCP creates a reliable, in-order channel
 HTTP delivers web pages

Computer Science and Engineering  The Ohio State University

Network Ports
 A single host has many ports
 Application-level protocols have default

port
 ftp -> 20
 http -> 80
 imap ->143
 ssh -> 22
 smtp -> 25
 telnet-> 23

 A “web server” is just a program,
running, waiting, listening for a call (on
port 80)
 See telnet

Computer Science and Engineering  The Ohio State University

URL
 Uniform Resource Locator

scheme://FQDN:port/path?query#fragment

 Schemes include http, ftp, mailto, file…
 Case insensitive, but prefer lower case

 Port is optional (each scheme has default)
 80 for http

 Variety of formats, depending on scheme
http://www.osu.edu/news/index.php
ftp://doe@ftp.cse.ohio-state.edu
mailto://brutus.1@osu.edu

 FQDN is case insensitive, prefer lower
case

Computer Science and Engineering  The Ohio State University

Document Root

 Web server configured to serve
documents from a location in file system
 “document root”: /class/3901
 File: /class/3901/labs/lab2.html
 URL:

http://www.cse.osu.edu/labs/lab2.html

 Slashes in path should be for server’s OS
(but forward slashes are common)

 Virtual servers: multiple doc roots
 Proxy servers: remote doc roots

Computer Science and Engineering  The Ohio State University

Encoding (and Decoding)
 A single value can be viewed at two

levels, eg:
 HELLO
-.. .-.. ---

 Different uses: reading vs transmission
 Different alphabets (letters vs dot-dash)

and/or requirements
 Eg. Message has only upper case letters

 Encoding/decoding is the translation
between these levels
 c.f. encrypting/decrypting

 Abstract value vs concrete representation
 Correspondence maps between the two

Computer Science and Engineering  The Ohio State University

Example: URL Encoding
 Invariant on abstract value (constraint)
 Reserved metacharacters (;, :, &, #, @…)

 Invariant on encoding (convention)
 Small set of valid characters, others (eg

space, ~, newline…) are not allowed
 So some characters in abstract value are

encoded as %hh (ASCII code in hex)
 %3B for ;, %40 for @
 %20 for space, %7E for ~

 Q: What about % in abstract value?
 A: Encode it too! %25

 aka “percent encoding”

Computer Science and Engineering  The Ohio State University

URL Encoding

Value Mascot "address": brutus@osu.edu

Encoding Mascot%20%22address%22%3A%20brutus%40osu.edu

Computer Science and Engineering  The Ohio State University

MIME
 Multipurpose Internet Mail Extensions
 Originally for email attachments

 Content Type: How to interpret a file
 File is a blob of bits (encoding)
 How should we decode this blob into an (abstract)

value? Colors, sounds, characters?
 Recall: correspondence relation

 Syntax: type/subtype
 text/plain, text/html, text/css, text/javascript
 image/gif, image/png, image/jpeg
 video/mpeg, video/quicktime

 Transfer Encoding: How to interpret a msg
 How to decode the blob of bits that arrived
 A layered encoding
 Examples: quoted-printable, base64

Computer Science and Engineering  The Ohio State University

Example: Multiple Parts
MIME-Version: 1.0
Content-Type: multipart/mixed; boundary=aFrontierString

This is a message with multiple parts in MIME format.
--aFrontierString
Content-Type: text/plain

This is the body of the message.
--aFrontierString
Content-Type: application/octet-stream
Content-Transfer-Encoding: base64

PGh0bWw+CiAgPGhlYWQ+CiAgPC9oZWFkPgogIDxib2R5PgogICAgPHA
+VGhpcyBpcyB0aGUg
Ym9keSBvZiB0aGUgbWVzc2FnZS48L3A+CiAgPC9ib2R5Pgo8L2h0bWw
+Cg==
--aFrontierString--

Computer Science and Engineering  The Ohio State University

Example: Content Type
MIME-Version: 1.0
Content-Type: multipart/mixed; boundary=aFrontierString

This is a message with multiple parts in MIME format.
--aFrontierString
Content-Type: text/plain

This is the body of the message.
--aFrontierString
Content-Type: application/octet-stream
Content-Transfer-Encoding: base64

PGh0bWw+CiAgPGhlYWQ+CiAgPC9oZWFkPgogIDxib2R5PgogICAgPHA
+VGhpcyBpcyB0aGUg
Ym9keSBvZiB0aGUgbWVzc2FnZS48L3A+CiAgPC9ib2R5Pgo8L2h0bWw
+Cg==
--aFrontierString--

Computer Science and Engineering  The Ohio State University

Example: Transfer Encoding
MIME-Version: 1.0
Content-Type: multipart/mixed; boundary=aFrontierString

This is a message with multiple parts in MIME format.
--aFrontierString
Content-Type: text/plain

This is the body of the message.
--aFrontierString
Content-Type: application/octet-stream
Content-Transfer-Encoding: base64

PGh0bWw+CiAgPGhlYWQ+CiAgPC9oZWFkPgogIDxib2R5PgogICAgPHA
+VGhpcyBpcyB0aGUg
Ym9keSBvZiB0aGUgbWVzc2FnZS48L3A+CiAgPC9ib2R5Pgo8L2h0bWw
+Cg==
--aFrontierString--

Computer Science and Engineering  The Ohio State University

Layered Encoding

content
(bits)

source
(image)

ffd8ffe000104a464946…

transfer encoded
(channel)
ASCII

/9j/4AAQSk…

Content-Type
image/jpeg

Content-Transfer-Encoding
???

Computer Science and Engineering  The Ohio State University

Encoding (Binary) Data in ASCII
 Binary data: Any byte value is possible
 00 to FF (i.e. xxxx xxxx)

 ASCII data: bytes start with 0
 00 to 7F (i.e. 0xxx xxxx)

 Problem: a channel that needs ASCII
 Encoding must use ASCII alphabet

 Hex: 4 bits becomes 1 ASCII character
1101 0110 1100 1111 0011 1001

D 6 A F 2 5
 Problem?

Computer Science and Engineering  The Ohio State University

Quoted-Printable Encoding

 Observation: bytes that happen to be
ASCII do not need to be encoded
 If most data is text, savings are significant

 For each byte:
 If first bit is 0, do nothing
 If first bit is 1, encode with 3 bytes: =XY

where XY is the hex value of byte
 Limit line length to 76 characters
 Finish lines with "="
 Q: What if data contains the byte "="?

Computer Science and Engineering  The Ohio State University

Example

Computer Science and Engineering  The Ohio State University

Encoding Binary Data

 What if most data is not ASCII?
 Raw (base 256): 8 bits are a digit (byte)
1101 0110 1100 1111 0010 0101
? ? %

 Hex (base 16): 4 bits  digit (byte)
1101 0110 1100 1111 0011 1001
D 6 A F 2 5

 Quoted-Printable: 8 bits  3 bytes
1101 0110 1100 1111 0011 1001
=D 6 =A F %

 Can we do better?

Computer Science and Engineering  The Ohio State University

Encoding Binary Data

 What if most data is not ASCII?
 Raw (base 256): 8 bits are a digit (byte)
1101 0110 1100 1111 0010 0101
? ? %

 Hex (base 16): 4 bits  digit (byte)
1101 0110 1100 1111 0011 1001
D 6 A F 2 5

 Base 64: 6 bits  3 digit (byte)
1101 0110 1100 1111 0011 1001
1 s 8 5

Computer Science and Engineering  The Ohio State University

Base64 Alphabet

en.wikipedia.org/wiki/Base64

Computer Science and Engineering  The Ohio State University

Layered Encoding: Base64

transmission
(bits)

content
(bits)

source
(image)

ffd8ffe000104a464946…

2f396a2f344141536b…

encoded
(alphabet)

/9j/4AAQSk…

Content-Type
image/jpeg

Content-Transfer-Encoding
base64

ASCII

Computer Science and Engineering  The Ohio State University

Base64 Encoding

en.wikipedia.org/wiki/Base64

Computer Science and Engineering  The Ohio State University

Determining MIME Content Type
 The sender (web server) determines MIME

(content) type of document being sent
 Rules map file extensions to MIME types

 If file arrives without MIME info, receiver has
to guess (see file command)
 File extension may help
 Contents may help: magic number at start

 JPG: ff d8…
 PDF: 25 50 44 46… (ie %PDF)
 PNG: 89 50 4e 47 0d 0a 1a 0a… (ie .PNG…)

 Some types handled by browser itself
 Others require plugin or application
 Experimental MIME subtypes: x-
 application/x-gzip

Computer Science and Engineering  The Ohio State University

Summary

 IP address are unique on network
 IPv4 vs IPv6

 DNS maps strings to IP addresses
 Domains nested hierarchically

 URLs identify resources on network
 Scheme, host, path

 MIME type defines a file’s encoding
 Correspondence
 Layered encodings are possible too

