Project Groups: To D
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1. Find your group on Carmen (People)

2. Exchange contact information
B Phone, discord
B Schedules

3. Choose a group name

4. Each person chooses a tech area
B HTML/CSS, JavaScript, or Ruby

B Group constraints on choices:
O No more than 2 people per technology
O Ideal: Each technology represented

5. Also choose a backup tech area
B "Don’'t Care” is fine (as primary or secondary)



Git:
Advanced Topics

Lecture 4




Basic Workflow: Overview

Co

1. Configure git locally (everyone)
2. Create central repo (1 person)

3. Create local repo (everyone)
4

. Local development (everyone):
B Commit locally
B Fetch/merge as appropriate
B Push to share



Step 1: Configure Git Locally
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Each team member, in their own VM

B Reqg’d: Set identity for authoring commits

$ git config --global user.name "Brutus
Buckeye"

$ git config --global user.email bb@osu.edu

B Rec'd: set default initial branch name (2.28+)
$ git config --global init.defaultBranch main
B Tips

O Add email to GitHub account (Settings > Email)

O Alternative: use GitHub-generated fake address:
B Settings > Email > Keep my address private
B Find ID+USERNAMEQusers.noreply.github.com

O Add your SSH key to your GitHub account



Step 2: Initialize Central Re
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One person, once per project

Hosting services (GitHub, GitLab,
BitBucket...) use a web interface for this
step

Alternative: a location that the group has
access to (e.qg. stdlinux):

B Create central repository in group's project
directory (/project/c3901aa03)

$ cd /project/c3901aal3
S mkdir projl # an ordinary directory

B Initialize this directory as a bare git
repository, with group permissions

S git init --bare --shared projl




Step 3: Create Local Rep05|tory

The Ohio

Each team member, once, in their VM
B Create local repo by cloning the central one
$ git clone gitRgithub.com:bb/projl.git

B Copies entire repo, including store, and sets a
remote called “origin”
$ cd projl
projl$ git remote -v # display info
origin git@github.com:bb/projl.git (fetch)
origin git@github.com:bb/projl.git (push)

Different ways to clone

B SSH: Add your SSH key to the remote host,
then it is easy to fetch/push

B Git Credential Manager




Step 4: Local Development
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Each team member repeats:
B Edit and commit (to local repository) often
S git status/add/rm/commit

B Pull others' work when you can benefit
S git fetch origin # bring in changes

$ git log/checkout # examine new work
S git merge, commit # merge work

B Push to central repository when confident
S git push origin main # share



Demo
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https://qgit-school.qgithub.io/visualizing-
qgit/#upstream-changes

ry:

git commit

git fetch origin # see origin/feature
git merge origin/feature # see feature

git push origin feature # see remote



Your Turn: Playing with Git

Com

Navigate to class org on GH and find
the repo called first-commits

Clone the repo to your VM

Do some development!
B Edit
B Inspect the store’s DAG
$ git log --graph --oneline --all
B Commit, fetch, merge, push...
B Rinse, repeat




Professional Git
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Commit/branch conventions

Deciding what goes in, and what stays
out of the store

B Share all the things that should be shared
B Only share things that should be shared
Normalizing contents of the store

B Windows vs linux line endings




Commit/Branch Conventions
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[eam strategy for managing the
structure of the DAG (ie the store)

Examples:

B “Main is always deployable”

O All work is done on other branches, merged
with main only when result is executable

B "Feature branches”, “developer branches”

O Each feature developed on its own branch vs.
each developer works on their own branch

B “Favor rebase over merge”
O Always append to latest origin/branch




Example: Branch-Based Dev

feature release
branches develop branches hotfixes master
N d
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Example: Trunk-Based Dev
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What Goes Into Central Repo?
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O Avoid developer-specific environment settings
B Hard-coded file/directory paths from local machine

B OK to include a sample config (each developer customizes
but keeps their version out of store)

O Avoid living binaries (docx, pdf)
B Meaningless diffs

O Avoid generated files
B compiled files, the build

O Avoid IDE-specific files (.settings)

B Some generic ones are OK so it is easier to get started by
cloning, especially if the team uses the same IDE

O Avoid private information
B Passwords, secret tokens
B Better: Use environment variables instead

O Agree on code formatting

B Auto-format is good, but only if everyone uses the same
format settings!

B Spaces vs tabs, brace position, etc



Ignoring Files from Working Tree
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O Use a .gitignore file in root of project
B Committed as part of the project
B Consistent policy for everyone on team

O Examples: https://github.com/github/gitignore
# github:gitignore/Java.gitignore
# Compiled class file
*.class

Log file
.log

* I

Package Files #
.jar

.war

.ear

.zip

.tar.gz

.rar

* ok F * * ok Mg



Problem: End-of- I|ne Confusmn
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Differences between OS's in how a hew Ime
IS encoded in a text file

B Windows: 2 bytes, CR + LF ("\r\n", OxOD Ox0A)
B Unix/Mac: 1 byte, LF ("\n", Ox0A)

Difference is hidden by most editors

B An IDE might recognize either when opening a
file, but convert all to \r\n when saving

B Demo: hexdump (or VSCode hex editor)

But difference matters to git when
comparing files!
Problem: OS differences within team

B Changing 1 line causes every line to be modified
B Flood of spurious changes masks the real edit




Solution: Normalization

Convention: Store uses \n (ie linux)
B Working tree uses OS's native eol

B Convert when moving data between the
two (e.g., commit, checkout)

Note: Applies to text files only

B A binary file, like a jpg, might contain
Ox0D and/or 0x0A, but they should never
be converted

How does git know whether a file is
text or binary?

B Heuristics: auto-detect based on contents
B Configuration: filename matches a pattern




Normalization With .gitattributes

O
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Use a .gitattributes file in root of project

B Committed as part of the project

B Consistent policy for everyone on team

Example:

# Auto detect text files and perform LF normalization
* text=auto

.classpath text
.project text

# These files are text, should be normalized (crlf=>1f)
* . Jjava text

* . md text

* . txt text

*

*

# These files are binary, should be left untouched
*.class binary
*.jar binary



Ninja Git: Advanced Moves

lemporary storage
stash

Undoing big and small mistakes in the
working tree
reset, checkout

Undoing mistakes in store
amend

DAG surgery

rebase




Advanced: Temporary Storage

Say you have uncommitted work and
want to look at a different branch

Checkout won't work! (Recall: "only
checkout when wt is clean")

HEAD
®
uncommited
r P changes

6

\_ J
ind I




Stash: Push Work Onto a Stac
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$ git stash # repo now clean
$ git checkout ..etc.. # feel free to poke around

)

2

clean

ind



Stash: Pop Work Off the Stack

ity

$ git stash pop # restores state of wt/index

# equivalent to:
$ git stash apply # restore wt and index
$ git stash drop # restore store

uncommited

P ~N changes

™




Advanced: Undoing Big Mistakes

Compute

Say you want to throw away all your
uncommited work

B ie "Roll back” to last commited state

Checkout HEAD won't work! £
e ]
uncommited
o P y P N changes

. J



Reset: Discarding Changes
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$ git reset --hard # updates wt to be HEAD
$ git clean —--dry-run # list untracked files
$ git clean —--force # remove untracked files

o)
e ]

replaced to be
~ same as HEAD

I
I
I
I
I
I
I
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ind I




Reset: Discarding Commits
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$ git reset --hard HEAD~1
# no need to git clean, since wt was already clean

HEAD moved _
(and attached branch) ™, Y

- wt |

replaced to be
P ~N same as
HEAD~1

a «— b [« c 1« d
yl

. 2 -
ol

now unreachable “




Advanced: Undo Small Mistakes

Compu

ty

Say you want to throw away some of
your uncommited work

B Restore a file to last committed version

E
e |
)

T\ ~+

Edits to
README.md

(0( I y o

a €<— b €«— c < d

6




Advanced: Undo Small Mistakes
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$ git checkout -- README.md
# -- means: rest is file/path (not branch)
# git checkout README.md ok, if not ambiguous

]
:

README.md
N matches §




Advanced: Rewriting History
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The Power to Change History
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Changing the store lets us:
B Fix mistakes in recent commits

B Clean up messy DAGs to make history
look more linear

Rule: Never change shared history

B Once something has been pushed to a
remote repo (e.g., origin), do not change
that part of the DAG

B So: A push is really a commitment!




Advanced: Rewriting History

ate University

Problem 1: Wrong or incomplete
commit

HEAD
uncommited

r P N\ changes

ﬁ

ind



Advanced: Rewriting History

ate University

Problem 1: Wrong or incomplete
commit




Advanced: Rewriting History

ate University

Problem 1: Wrong or incomplete
commit

B Oops! That wasn’t quite right...

HEAD
uncommited

r P N\ changes

=)

ind



Advanced: Rewriting History

ate University

Problem 1: Wrong or incomplete
commit

B Oops! That wasn’t quite right...

)
clean
ar L Y ) A
a €« b €/ ¢ <™ d
. )5




Advanced: Rewriting History

Problem 1: Wrong or incomplete
commit

B Oops! That wasn’t quite right...

HEAD “
maln

clean

4 o) £

ind



Advanced: Rewriting History

Problem 1: Wrong or incomplete
commit

Result: Lots of tiny “fix it”, “oops”

“retry” commits
HEAD “
maln

clean

ind



Commit --amend: Tip Repair

ate University

Alternative: Change most recent
commit(s)

uncommited
s P N\ changes

ind



Commit --amend: Tip Repair
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$ git add .
$ git commit —--amend —--no-edit
# no-edit keeps the same commit message

Ex

Brand new commit, e
different hash



Advanced: Rewriting
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Problem 2: As an independent branch
is being developed, main also evolves

ate University



Advanced: Rewriting
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Problem 2: As an independent branch
is being developed, main also evolves
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Advanced: Rewriting History

ate University

Problem 2: As an independent branch
is being developed, main also evolves

Result: Need periodic merges of main
with (incomplete) branch

r )
a _B/yf

a €« b <€ c




Advanced: Rewriting

with (incomplete) branch

HEAD
menu main

I I - t
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Problem 2: As an independent branch
is being developed, main also evolves

Result: Need periodic merges of main

.
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Advanced: Rewriting History

ate University

Problem 2: As an independent branch
is being developed, main also evolves

Result: Need periodic merges of main
with (incomplete) branch
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Rebase: DAG Surger
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Alternative: Move commits to a
different part of the DAG

Cman ] {menu.
[ 0 K
f < g
a B / 5
a <— b c < d




Rebase: DAG Surger
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$ git rebase main
# merging main into menu is now a fast-forward

men

[rnakm} menu

4 G <)

f < g
a I y o) ///
«—— b |le— «— d




Git Clients and Hosting Services

ty

Recommend'n: Know the command line!

IDEs are helpful too
B \VSCode, plus Git Graph extension

Lots of sites for hosting your repos:
B GitHub, GitLab, Bitbucket, SourceForge...
B See: git.wiki.kernel.org/index.php/GitHosting

[hese cloud services provide

B Storage space, account/access management
Pretty web interface

Issues, bug tracking

Workflow (eg forks) to promote contributions
from others




Clarity
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Warning: Academic Misconduct

Computer
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GitHub is a very popular service
B New repos are public by default

B Even free plan allows unlimited private repo’s
(and collaborators)

B 3901 has an organization for your private
repo’s and team access

Other services (e.g. GitLab, Bitbucket)
have similar issues

Public repo's containing coursework can
create academic misconduct issues

B Problems for poster
B Problems for plagiarist




Summary

Workflow

B Fetch/push frequency

B Respect team conventions for how/when
to use different branches

Central repo is a shared resource
B Contains common (source) code

B Normalize line endings and formats
Advanced techniques

B Stash, reset, rebase

Advice

B Learn by using the command line
B Beware academic misconduct




