Project Groups: To D

Computer Science and Engineering B The Ohio State University

1. Find your group on Carmen (People)

2. Exchange contact information
B Phone, discord
B Schedules

3. Choose a group name

4. Each person chooses a tech area
B HTML/CSS, JavaScript, or Ruby

B Group constraints on choices:
O No more than 2 people per technology
O Ideal: Each technology represented

5. Also choose a backup tech area
B "Don’'t Care” is fine (as primary or secondary)

Git:
Advanced Topics

Lecture 4

Basic Workflow: Overview

Co

1. Configure git locally (everyone)
2. Create central repo (1 person)

3. Create local repo (everyone)
4

. Local development (everyone):
B Commit locally
B Fetch/merge as appropriate
B Push to share

Step 1: Configure Git Locally

Computer Science and Engineering B The Ohio State University

Each team member, in their own VM

B Reqg’d: Set identity for authoring commits

$ git config --global user.name "Brutus
Buckeye"

$ git config --global user.email bb@osu.edu

B Rec'd: set default initial branch name (2.28+)
$ git config --global init.defaultBranch main
B Tips

O Add email to GitHub account (Settings > Email)

O Alternative: use GitHub-generated fake address:
B Settings > Email > Keep my address private
B Find ID+USERNAMEQusers.noreply.github.com

O Add your SSH key to your GitHub account

Step 2: Initialize Central Re

Computer Science and Engineering B The Ohio State University

One person, once per project

Hosting services (GitHub, GitLab,
BitBucket...) use a web interface for this
step

Alternative: a location that the group has
access to (e.qg. stdlinux):

B Create central repository in group's project
directory (/project/c3901aa03)

$ cd /project/c3901aal3
S mkdir projl # an ordinary directory

B Initialize this directory as a bare git
repository, with group permissions

S git init --bare --shared projl

Step 3: Create Local Rep05|tory

The Ohio

Each team member, once, in their VM
B Create local repo by cloning the central one
$ git clone gitRgithub.com:bb/projl.git

B Copies entire repo, including store, and sets a
remote called “origin”
$ cd projl
projl$ git remote -v # display info
origin git@github.com:bb/projl.git (fetch)
origin git@github.com:bb/projl.git (push)

Different ways to clone

B SSH: Add your SSH key to the remote host,
then it is easy to fetch/push

B Git Credential Manager

Step 4: Local Development

Co he Ohio State University

Each team member repeats:
B Edit and commit (to local repository) often
S git status/add/rm/commit

B Pull others' work when you can benefit
S git fetch origin # bring in changes

$ git log/checkout # examine new work
S git merge, commit # merge work

B Push to central repository when confident
S git push origin main # share

Demo

Computer Science and Engineering B The Ohio State University

https://qgit-school.qgithub.io/visualizing-
qgit/#upstream-changes

ry:

git commit

git fetch origin # see origin/feature
git merge origin/feature # see feature

git push origin feature # see remote

Your Turn: Playing with Git

Com

Navigate to class org on GH and find
the repo called first-commits

Clone the repo to your VM

Do some development!
B Edit
B Inspect the store’s DAG
$ git log --graph --oneline --all
B Commit, fetch, merge, push...
B Rinse, repeat

Professional Git

Computer Science and Engineering B The Ohio State University

Commit/branch conventions

Deciding what goes in, and what stays
out of the store

B Share all the things that should be shared
B Only share things that should be shared
Normalizing contents of the store

B Windows vs linux line endings

Commit/Branch Conventions

Comp ing B The Ohio State University

[eam strategy for managing the
structure of the DAG (ie the store)

Examples:

B “Main is always deployable”

O All work is done on other branches, merged
with main only when result is executable

B "Feature branches”, “developer branches”

O Each feature developed on its own branch vs.
each developer works on their own branch

B “Favor rebase over merge”
O Always append to latest origin/branch

Example: Branch-Based Dev

feature release
branches develop branches hotfixes master
N d
t
@ | -

Severe bug
fixed for
production:
hotfix 0.2

Major
feature for
next release

Feature
for future
release

Incorporate
bugfix in
develop

Tag
0.2

O«

Start of
release
branch for

From this point on,
“next release”
means the release

i \\f }
! Tag

O 1.0

Bugfixes from
rel. branch
may be
continuously
merged back
into develop

Computer Science and Engineering B The Ohio State University

Example: Trunk-Based Dev

Computer Science and Engineering B The Ohio State University

branches

I‘I‘IEJStEr‘ release

Tiene

release-0.x

fized for
production

Faature
develkapment
happens in
the masber
branch

Chinmy-pick
bugfix back
Lo PRASEEr

sppcial than
any other

Thesf &fe
na merge
COMMali On
master, Oy
chamy- ik
and rebade
oS im

Dugfines are
Continusushy

What Goes Into Central Repo?

Computer Science and Engineering B The Ohio State University

O Avoid developer-specific environment settings
B Hard-coded file/directory paths from local machine

B OK to include a sample config (each developer customizes
but keeps their version out of store)

O Avoid living binaries (docx, pdf)
B Meaningless diffs

O Avoid generated files
B compiled files, the build

O Avoid IDE-specific files (.settings)

B Some generic ones are OK so it is easier to get started by
cloning, especially if the team uses the same IDE

O Avoid private information
B Passwords, secret tokens
B Better: Use environment variables instead

O Agree on code formatting

B Auto-format is good, but only if everyone uses the same
format settings!

B Spaces vs tabs, brace position, etc

Ignoring Files from Working Tree

Computer Science and Engineering B The Ohio State University

O Use a .gitignore file in root of project
B Committed as part of the project
B Consistent policy for everyone on team

O Examples: https://github.com/github/gitignore
github:gitignore/Java.gitignore
Compiled class file
*.class

Log file
.log

* I

Package Files #
.jar

.war

.ear

.zip

.tar.gz

.rar

* ok F * * ok Mg

Problem: End-of- I|ne Confusmn

omp rin, The Ohio ersity

Differences between OS's in how a hew Ime
IS encoded in a text file

B Windows: 2 bytes, CR + LF ("\r\n", OxOD Ox0A)
B Unix/Mac: 1 byte, LF ("\n", Ox0A)

Difference is hidden by most editors

B An IDE might recognize either when opening a
file, but convert all to \r\n when saving

B Demo: hexdump (or VSCode hex editor)

But difference matters to git when
comparing files!
Problem: OS differences within team

B Changing 1 line causes every line to be modified
B Flood of spurious changes masks the real edit

Solution: Normalization

Convention: Store uses \n (ie linux)
B Working tree uses OS's native eol

B Convert when moving data between the
two (e.g., commit, checkout)

Note: Applies to text files only

B A binary file, like a jpg, might contain
Ox0D and/or 0x0A, but they should never
be converted

How does git know whether a file is
text or binary?

B Heuristics: auto-detect based on contents
B Configuration: filename matches a pattern

Normalization With .gitattributes

O

Computer Science and Engineering B The Ohio State University

Use a .gitattributes file in root of project

B Committed as part of the project

B Consistent policy for everyone on team

Example:

Auto detect text files and perform LF normalization
* text=auto

.classpath text
.project text

These files are text, should be normalized (crlf=>1f)
* . Jjava text

* . md text

* . txt text

*

*

These files are binary, should be left untouched
*.class binary
*.jar binary

Ninja Git: Advanced Moves

lemporary storage
stash

Undoing big and small mistakes in the
working tree
reset, checkout

Undoing mistakes in store
amend

DAG surgery

rebase

Advanced: Temporary Storage

Say you have uncommitted work and
want to look at a different branch

Checkout won't work! (Recall: "only
checkout when wt is clean")

HEAD
®
uncommited
r P changes

6

_ J
ind I

Stash: Push Work Onto a Stac

Computer Science and Engineering B The Ohio State University

$ git stash # repo now clean
$ git checkout ..etc.. # feel free to poke around

)

2

clean

ind

Stash: Pop Work Off the Stack

ity

$ git stash pop # restores state of wt/index

equivalent to:
$ git stash apply # restore wt and index
$ git stash drop # restore store

uncommited

P ~N changes

™

Advanced: Undoing Big Mistakes

Compute

Say you want to throw away all your
uncommited work

B ie "Roll back” to last commited state

Checkout HEAD won't work! £
e]
uncommited
o P y P N changes

. J

Reset: Discarding Changes

Computer Science and Engineering B The Ohio State University

$ git reset --hard # updates wt to be HEAD
$ git clean —--dry-run # list untracked files
$ git clean —--force # remove untracked files

o)
e]

replaced to be
~ same as HEAD

I
I
I
I
I
I
I

6

_ J :
ind I

Reset: Discarding Commits

Computer Science and Engineering B The Ohio State University

$ git reset --hard HEAD~1
no need to git clean, since wt was already clean

HEAD moved _
(and attached branch) ™, Y

- wt |

replaced to be
P ~N same as
HEAD~1

a «— b [« c 1« d
yl

. 2 -
ol

now unreachable “

Advanced: Undo Small Mistakes

Compu

ty

Say you want to throw away some of
your uncommited work

B Restore a file to last committed version

E
e |
)

T\ ~+

Edits to
README.md

(0(I y o

a €<— b €«— c < d

6

Advanced: Undo Small Mistakes

Computer Science and Engineering B The Ohio State University

$ git checkout -- README.md
-- means: rest is file/path (not branch)
git checkout README.md ok, if not ambiguous

]
:

README.md
N matches §

Advanced: Rewriting History

Computer Science and Engineering B The Ohio State University

The Power to Change History

Computer Science a

University

Changing the store lets us:
B Fix mistakes in recent commits

B Clean up messy DAGs to make history
look more linear

Rule: Never change shared history

B Once something has been pushed to a
remote repo (e.g., origin), do not change
that part of the DAG

B So: A push is really a commitment!

Advanced: Rewriting History

ate University

Problem 1: Wrong or incomplete
commit

HEAD
uncommited

r P N\ changes

ﬁ

ind

Advanced: Rewriting History

ate University

Problem 1: Wrong or incomplete
commit

Advanced: Rewriting History

ate University

Problem 1: Wrong or incomplete
commit

B Oops! That wasn’t quite right...

HEAD
uncommited

r P N\ changes

=)

ind

Advanced: Rewriting History

ate University

Problem 1: Wrong or incomplete
commit

B Oops! That wasn’t quite right...

)
clean
ar L Y) A
a €« b €/ ¢ <™ d
.)5

Advanced: Rewriting History

Problem 1: Wrong or incomplete
commit

B Oops! That wasn’t quite right...

HEAD “
maln

clean

4 o) £

ind

Advanced: Rewriting History

Problem 1: Wrong or incomplete
commit

Result: Lots of tiny “fix it”, “oops”

“retry” commits
HEAD “
maln

clean

ind

Commit --amend: Tip Repair

ate University

Alternative: Change most recent
commit(s)

uncommited
s P N\ changes

ind

Commit --amend: Tip Repair

Computer Science and Engineering B The Ohio State University

$ git add .
$ git commit —--amend —--no-edit
no-edit keeps the same commit message

Ex

Brand new commit, e
different hash

Advanced: Rewriting

—

f

o

a <— b

~N

I I - t
Computer Science and Engineering B The Ohio St

Problem 2: As an independent branch
is being developed, main also evolves

ate University

Advanced: Rewriting

a b

g

b €

)4

C

\

I I - t
Computer Science and Engineering B The Ohio St

Problem 2: As an independent branch
is being developed, main also evolves

main

ate University

Advanced: Rewriting History

ate University

Problem 2: As an independent branch
is being developed, main also evolves

Result: Need periodic merges of main
with (incomplete) branch

r)
a _B/yf

a €« b <€ c

Advanced: Rewriting

with (incomplete) branch

HEAD
menu main

I I - t
Computer Science and Engineering B The Ohio St

Problem 2: As an independent branch
is being developed, main also evolves

Result: Need periodic merges of main

.

g
) E
d <«<— e

~

ate University

Advanced: Rewriting History

ate University

Problem 2: As an independent branch
is being developed, main also evolves

Result: Need periodic merges of main
with (incomplete) branch

~ 0 K u_\
h

f g <«
a b / Y E) £
d

Rebase: DAG Surger

Computer Science and Engineering B The Ohio State Universi

Alternative: Move commits to a
different part of the DAG

Cman] {menu.
[0 K
f < g
a B / 5
a <— b c < d

Rebase: DAG Surger

Computer Science and Engineering B The Ohio State University

$ git rebase main
merging main into menu is now a fast-forward

men

[rnakm} menu

4 G <)

f < g
a I y o) ///
«—— b |le— «— d

Git Clients and Hosting Services

ty

Recommend'n: Know the command line!

IDEs are helpful too
B \VSCode, plus Git Graph extension

Lots of sites for hosting your repos:
B GitHub, GitLab, Bitbucket, SourceForge...
B See: git.wiki.kernel.org/index.php/GitHosting

[hese cloud services provide

B Storage space, account/access management
Pretty web interface

Issues, bug tracking

Workflow (eg forks) to promote contributions
from others

Clarity

Computer Science and Engineering B The Ohio State University

Warning: Academic Misconduct

Computer

ty

GitHub is a very popular service
B New repos are public by default

B Even free plan allows unlimited private repo’s
(and collaborators)

B 3901 has an organization for your private
repo’s and team access

Other services (e.g. GitLab, Bitbucket)
have similar issues

Public repo's containing coursework can
create academic misconduct issues

B Problems for poster
B Problems for plagiarist

Summary

Workflow

B Fetch/push frequency

B Respect team conventions for how/when
to use different branches

Central repo is a shared resource
B Contains common (source) code

B Normalize line endings and formats
Advanced techniques

B Stash, reset, rebase

Advice

B Learn by using the command line
B Beware academic misconduct

