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Demo
 Prep: Empty (but initialized) repo
 Linear development:
 Create, edit, rename, ls -la files
 Git: add, status, commit, log

 Checkout (time travel, detach HEAD)
 Branch (re-attach HEAD)
 More commits, see split in history
 Merge
 No conflict
 Fast-forward

 Play: git-school.github.io/visualizing-git
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What Does "D" Stand For?

 Distributed version control
 Multiple people, distributed across 

network
 Each person has their own repository!
 Everyone has their own store (history)!
 Big difference with older VCS (eg SVN)

 Units of data movement: changeset
 Communication between teammates is to 

bring stores in sync
 Basic operators: fetch and push
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Sarah's Repository
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And Matt's Repository

a b dc e

Sarah

a b f

Matt

g

wt

wt

main

HEAD

main

HEAD



Computer Science and Engineering   The Ohio State University

Some Shared History
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Fetch: Remote Store  Local
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tree
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added to store

mt/main

sarah$ git fetch mt
main

HEAD
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Remote Repository Unchanged
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Workflow: Merge After Fetch
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sarah$ git merge mt/main
main

HEAD
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Remote Repository Unchanged
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View of DAG with All Branches

$ git log --oneline --graph # shows local & remote

* 1618849 (HEAD -> main, origin/main) clean up css
*   d579fa2 (alert) merge in improvements from master
|\
| * 0f10869 replace image-url helper in css
* | b595b10 (origin/alert) add buckeye alert notes
* | a6e8eb3 add raw buckeye alert download
|/
* b4e201c wrap osu layout around content
* e9d3686 add Rakefile and refactor schedule loop
* 515aaa3 create README.md
* eb26605 initial commit
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Your Turn

 Show the state of Matt's repository 
after each of the following steps
 Fetch (from Sarah)
 Merge
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Sarah and Matt's Repositories
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Some Shared History
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Your Turn: Fetch

matt$ git fetch sr
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Your Turn: Merge

matt$ git merge sr/main
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Demo

 https://git-school.github.io/visualizing-
git/#upstream-changes

 Try:
git commit
git fetch origin # see origin/feature
git merge origin/feature # see feature
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Pull: Fetch then Merge

 A pull combines both fetch & merge
matt$ git pull sr

 Advice: Prefer explicit fetch, merge
 After fetch, examine new work

$ git log      # see commit messages
$ git checkout # see work
$ git diff     # compare

 Then merge
 Easier to adopt more complex workflows 

(e.g., rebasing instead of merging)
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Push: Local Store  Remote
 Push sends local commits to remote store
 Usually push one branch (at a time)

sarah$ git push mt fix
 Advances Matt's fix branch
 Advances Sarah's mt/fix remote branch

 Requires:
1. Matt's fix branch must not be his HEAD
2. Matt's fix branch must be ancestor of Sarah's

 Common practices:
1. Only push to bare repositories (bare means 

no working tree, ie no HEAD)
2. Get remote store's branch into local DAG (ie

fetch, merge, commit) before pushing 
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Remote's Branch is Ancestor
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Push: Local Store  Remote
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Push: After
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Commit/Checkout vs Push/Fetch
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Common Topology: Star

 n-person team has n+1 repositories
 1 shared central repository (bare!)
 1 local repository / developer

 Each developer clones central repository
 Creates (local) copy of (entire) central repo
 Local repo has a remote called “origin”
 Default source/destination for fetch/push

 Variations for central repository:
 Everyone can read and write (ie push)
 Everyone can read, but only 1 person can 

write (responsible for pulling and merging)
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Common Topology: Star

Source: http://nvie.com/posts/a-successful-git-branching-model/

Bare repository
(no working tree)
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Summary

 Push/fetch to share your store with 
remote repositories
 Neither working tree is affected

 Branches in history are easy to form
 Committing when HEAD is not a leaf
 Fetching work based on earlier commit

 Team coordination
 One single, central repo
 Every developer pushes/fetches from their 

(local) repo to this central (remote) repo


