
Computer Science and Engineering  College of Engineering  The Ohio State University

Git:
Distributed Version Control

Lecture 3

Computer Science and Engineering  The Ohio State University

Demo
 Prep: Empty (but initialized) repo
 Linear development:
 Create, edit, rename, ls -la files
 Git: add, status, commit, log

 Checkout (time travel, detach HEAD)
 Branch (re-attach HEAD)
 More commits, see split in history
 Merge
 No conflict
 Fast-forward

 Play: git-school.github.io/visualizing-git

Computer Science and Engineering  The Ohio State University

What Does "D" Stand For?

 Distributed version control
 Multiple people, distributed across

network
 Each person has their own repository!
 Everyone has their own store (history)!
 Big difference with older VCS (eg SVN)

 Units of data movement: changeset
 Communication between teammates is to

bring stores in sync
 Basic operators: fetch and push

Computer Science and Engineering  The Ohio State University

Sarah's Repository

a b dc e

Sarah
wt

main

HEAD

Computer Science and Engineering  The Ohio State University

And Matt's Repository

a b dc e

Sarah

a b f

Matt

g

wt

wt

main

HEAD

main

HEAD

Computer Science and Engineering  The Ohio State University

Some Shared History

a b dc e

Sarah

a b f

Matt

g

wt

wt

main

HEAD

main

HEAD

Computer Science and Engineering  The Ohio State University

Fetch: Remote Store  Local

a b dc e

gf

Sarah

working
tree
unaffected!

wt

remote
branch

new changesets
added to store

mt/main

sarah$ git fetch mt
main

HEAD

Computer Science and Engineering  The Ohio State University

Remote Repository Unchanged

a b f

Matt

g

main

HEAD

Computer Science and Engineering  The Ohio State University

Workflow: Merge After Fetch

a b dc e

gf

h

mt/main

Sarah

sarah$ git merge mt/main
main

HEAD

Computer Science and Engineering  The Ohio State University

Remote Repository Unchanged

a b f

Matt

g

main

HEAD

Computer Science and Engineering  The Ohio State University

View of DAG with All Branches

$ git log --oneline --graph # shows local & remote

* 1618849 (HEAD -> main, origin/main) clean up css
* d579fa2 (alert) merge in improvements from master
|\
| * 0f10869 replace image-url helper in css
* | b595b10 (origin/alert) add buckeye alert notes
* | a6e8eb3 add raw buckeye alert download
|/
* b4e201c wrap osu layout around content
* e9d3686 add Rakefile and refactor schedule loop
* 515aaa3 create README.md
* eb26605 initial commit

Computer Science and Engineering  The Ohio State University

Your Turn

 Show the state of Matt's repository
after each of the following steps
 Fetch (from Sarah)
 Merge

Computer Science and Engineering  The Ohio State University

Sarah and Matt's Repositories

a b dc e

gf

Sarah

h

mt/main

a b f

Matt

g

main

HEAD

main

HEAD

Computer Science and Engineering  The Ohio State University

Some Shared History

a b dc e

gf

Sarah

h

mt/main

a b f

Matt

g

main

HEAD

main

HEAD

Computer Science and Engineering  The Ohio State University

Your Turn: Fetch

matt$ git fetch sr

Computer Science and Engineering  The Ohio State University

Your Turn: Merge

matt$ git merge sr/main

Computer Science and Engineering  The Ohio State University

Demo

 https://git-school.github.io/visualizing-
git/#upstream-changes

 Try:
git commit
git fetch origin # see origin/feature
git merge origin/feature # see feature

Computer Science and Engineering  The Ohio State University

Pull: Fetch then Merge

 A pull combines both fetch & merge
matt$ git pull sr

 Advice: Prefer explicit fetch, merge
 After fetch, examine new work

$ git log # see commit messages
$ git checkout # see work
$ git diff # compare

 Then merge
 Easier to adopt more complex workflows

(e.g., rebasing instead of merging)

Computer Science and Engineering  The Ohio State University

Push: Local Store  Remote
 Push sends local commits to remote store
 Usually push one branch (at a time)

sarah$ git push mt fix
 Advances Matt's fix branch
 Advances Sarah's mt/fix remote branch

 Requires:
1. Matt's fix branch must not be his HEAD
2. Matt's fix branch must be ancestor of Sarah's

 Common practices:
1. Only push to bare repositories (bare means

no working tree, ie no HEAD)
2. Get remote store's branch into local DAG (ie

fetch, merge, commit) before pushing

Computer Science and Engineering  The Ohio State University

Remote's Branch is Ancestor

a b dc e

Sarah

HEAD

fix

a b c

Matt

d

fix

mt/fix

wt

main

HEAD

Computer Science and Engineering  The Ohio State University

Push: Local Store  Remote

a b dc e

Sarah

HEAD

fix

a b c

Matt

d

fix

mt/fix

wt

sarah$ git push mt fix

main

HEAD

Computer Science and Engineering  The Ohio State University

Push: After

a b dc e

Sarah

sarah$ git push mt fix

ea b c

Matt

d

working
tree
unaffected!

wt

HEAD

fix mt/fix

fixmain

HEAD

Computer Science and Engineering  The Ohio State University

Commit/Checkout vs Push/Fetch

Computer Science and Engineering  The Ohio State University

Common Topology: Star

 n-person team has n+1 repositories
 1 shared central repository (bare!)
 1 local repository / developer

 Each developer clones central repository
 Creates (local) copy of (entire) central repo
 Local repo has a remote called “origin”
 Default source/destination for fetch/push

 Variations for central repository:
 Everyone can read and write (ie push)
 Everyone can read, but only 1 person can

write (responsible for pulling and merging)

Computer Science and Engineering  The Ohio State University

Common Topology: Star

Source: http://nvie.com/posts/a-successful-git-branching-model/

Bare repository
(no working tree)

Computer Science and Engineering  The Ohio State University

Summary

 Push/fetch to share your store with
remote repositories
 Neither working tree is affected

 Branches in history are easy to form
 Committing when HEAD is not a leaf
 Fetching work based on earlier commit

 Team coordination
 One single, central repo
 Every developer pushes/fetches from their

(local) repo to this central (remote) repo

